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Abstract—The field of CT imaging has been witnessing 

significant advancements. However, extracting precise 

information from complex image data remains a challenging 

task. This study focuses on automating the extraction of CT 

images. In our study, we adopt the U-Net architecture, a 

multi-scale blurring technique on data, to obtain a multi-

resolution representation. This method is specifically 

designed to capture information at various granularities, 

from more detailed information to broader structures. After 

applying this multi-step blur, we calculate the difference 

between adjacent images to take advantage of the change in 

situation between different resolutions. Although feeding the 

blurred results Directly into the U-Net model may yield 

satisfactory results, our approach to computing differences 

between blurred images focuses on the nuances of these 

changes. To further enhance accuracy, we focused on 

ensemble learning, leveraging the weights from the training 

processes of multiple models to average their output during 

prediction. The results demonstrated that by adopting our 

approach, we achieved a Dice accuracy of 96.8% and 

improved the accuracy of CT image extraction.   

 

Keywords—convolutional neural network, U-Net, medical 

image processing, spine segmentation, ensemble learning, 

attention gate 

 

I. INTRODUCTION 

The modern healthcare ecosystem relies on medical 

imaging technology to alleviate the burdens on physicians 

while enabling access to more accurate and precise 

diagnostic information. One area of significant concern 

and challenge is the imaging of the spinal structure, which 

is central to bodily functions such as movement, support, 

and protection. The diagnosis of spinal diseases often 

requires a meticulous examination of cross-sectional 

images generated through CT scans. However, the manual 

labeling of slices, a task primarily carried out by radiologic 

technologists, is labor-intensive and time-consuming. 
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Furthermore, the intricate anatomy of the spinal structure 

amplifies the complexity of image extraction. Thus, there’s 

a growing need for an automated system capable of adept 

image extraction to assist the treating physician, reducing 

the workload and potentially minimizing human error. 

Considering the above, our study embarks on a journey 

into supervised learning, aiming to automate CT image 

extraction. We employed Convolutional Neural Networks 

(CNNs) tailored for medical image processing, building 

upon the foundational work of Shigeta et al. [1]. Unlike 

Shigeta et al., who utilized a U-Net-based CNN learning 

model to achieve notable accuracies on test data, our 

innovative approach incorporates an ensemble learning 

technique. The model proposed by Shigeta et al. [1] 

exploits a stack of CT spine slice data to learn from the x, 

y, and z-axis directions, simulating a pseudo three-

dimensional learning and taking the difference between 

two neighboring slices for the spinal data according to 

formula. We further refined this approach by expanded the 

pseudo three-dimensional convolution learning 

methodology among voxels in a 3D volume by expanding 

each voxel coordinate from n × n × n filter and taking the 

difference between slices n pixels apart to improve the 

accuracy and efficiency of CT image extraction, ensuring 

a more effective integration of semi-global information. 

Furthermore, we utilized the weights from multiple CNN 

models during the training phase and averaged the outputs 

during the prediction phase to enhance the accuracy of 

image extraction.  

This study hopes to bridge the existing research gaps, 

offering a significant leap towards automating the medical 

imaging process, and potentially contributing to faster, 

more accurate spinal disease diagnosis and treatment. 

II. RELATED STUDIES 

Ronneberger et al. [2] introduced a seminal innovation 

in the field of biomedical applications in 2015, the U-Net 
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model. This model is typified by a distinctive U-shaped 

architecture, comprising two crucial components: an 

encoder for image convolution and a decoder for 

deconvolution, predicated on the principles of Fully 

Convolutional Networks (FCNs). What sets the U-Net 

model apart is its capacity to maintain information that is 

frequently lost in the convolution process. This is 

accomplished through a novel application of skip 

connections, which in turn enable a more precise and 

accurate extraction of the region of interest in biomedical 

imaging scenarios. 

Huang et al. [3] showed a commendable result of 96% 

extraction accuracy of lumbar vertebrae using Ada Boost 

method. At the same time, Wang et al. By leveraging 

multi-atlas segmentation techniques, we managed an 

impressive accuracy of 92.7% in whole vertebra 

extraction [4]. 

Additionally, Korez et al. [5] published a report that 

revealed an extraction accuracy of 95.1% for healthy 

vertebrae (including the thoracic and lumbar regions of the 

spine). This was achieved by the Canny method, which 

combines certain tricks. 
Vania et al. [6] conducted experiments utilizing 

Convolutional Neural Networks (CNN), incorporating 
redundant class labels. Their approach resulted in a 
superior extraction accuracy of 94.3% by the Dice 
coefficient for all spines, offering an excellent 
performance when compared to existing methods, such as 
the Level-set method. This result confirms the potential 
and efficiency of CNN-based approaches in medical image 
analysis. 

In a preceding study, Kamata et al. [7] developed a 
model based on the original U-Net for the automatic 
extraction of tasks in spinal medical images. This model 
retained the U-shaped data flow of the original U-Net but 
underwent certain abridgments and parameter 
modifications, which has achieved an accuracy of 82.7% 
on untrained data. 

In the model proposed by Shigeta et al. [1], the 
Convolutional Neural Network (CNN) utilizes two-
channel image data, in which preprocessing incorporates 
volumetric shape change information into the grayscale 
single-channel CT image data. This process generates a 
change map derived from the CT value difference of 
corresponding pixels in upper and lower slices. The slice 
data is normalized to 512×512×512 for learning in the 
CNN model. The input and output are both two-channel in 
the U-shaped network, with the CNN image data stack 
being input for learning in batches of 512 slices per sample. 
The data output from each learning session is assessed for 
accuracy using the Dice coefficient, with reference to a 
labeled data stack that has undergone the same 
preprocessing as the learning data. The learning process of 
the CNN is carried out from each of three directions, which 
make outputs are integrated to generate a single spinal slice 
data stack (Fig. 1). This integration is achieved the average 
accuracy result data at 95.1%. 

 
Fig. 1. Pseudo 3D feature learning. 

III. MATERIALS AND METHODS 

Our research model integrates the output from a CNN 

model fed with slices from three axial directions to 

generate a single vertebral slice data stack. As part of the 

preprocessing of the slice data, we initially train on the data 

averaged within the 3×3×3, 5×5×5, and 7×7×7 ranges 

around the coordinates to identify the best performing 

model. Next, we use Shigeta et al.’s [1] pseudo 3D 

convolutional learning model for training process. This 

process has been proven to provide the best performance. 

These weights were acquired in three axial directions and 

subsequently reconstructed. We opted to utilize the 

weights derived from both these methods, thus facilitating 

pseudo 3D convolutional learning of global information 

(Fig. 2). 

 

 
Fig. 2. The preprocessing of local averaging within r×r×r cube region. 

CT images inherently exhibit three axes: x, y, and z, 

collectively representing a 3D data structure. These axes 

encompass a multitude of individual pixels, each 

contributing specific radiodensity information at their 

respective spatial coordinates. Using the definition of these 

three axes, the above-mentioned average processing 

within the local area can be expressed mathematically as 

shown in Eq. (1): 
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where 𝐷′(𝑖, 𝑗, 𝑘) represents the blurred intensity value at 

voxel (𝑖, 𝑗, 𝑘). 𝐷(𝑥, 𝑦, 𝑧) is the original intensity value at 

voxel (𝑥, 𝑦, 𝑧), 𝑟 is a positive integer that defines the cubic 

neighborhood size, and 𝑥, 𝑦, 𝑧 are integers that denote the 

voxel positions in the original image.  

This method effectively integrates a wide range of local 

information, and due to the function of the averaging 

process, it leads to a reduction in noise, allowing for the 

observation of broader patterns of variations. Additionally, 

this method presents an advantage by preserving the 

overall context, thus enhancing the potential to identify 
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meaningful trends within the data. This ability to handle a 

wide range of variations effectively contributes to 

improved model performance and robustness against 

diverse data distributions. 

To further enhance the model’s ability to extract 

features, we decided to incorporate an attention gate, as 

proposed by Abraham et al. [8] and Oktay et al. [9] (see 

Figs. 3 and 4). 

 

 

Fig. 3. U-Net model using attention gate. 

 

Fig. 4. Attention gates. 

We perform convolution operations on 𝑖1 and 𝑖2, where 

𝑖1  represents the upsampled component, and  𝑖2 is derived 

from the skip-connection. 𝑊1  and 𝑊2  are incorporated 

into the model as attention gate convolution kernels. 

Specifically, these weights are defined using a Conv2D 

layer in Keras and using glorot_uniform (Xavier 

initialization) as the initialization method. In this context, 

the weight matrices 𝑊1 and 𝑊2 serve as weight matrices in 

the convolution operation, enabling the learning and 

application of spatial filters to the input feature maps. 

These filters capture relevant features for subsequent 

processing stages, enhancing the representation of the 

input data. The ReLU activation function is signified by f, 

and the convolution operation is indicated by the 

asterisk (*). Following these operations, we proceed to 

sum 𝑔1  and 𝑔2 . Thereafter, we execute another 

convolution operation on g and pass the result through a 

sigmoid activation function, culminating in the attention 

weights (a), in which 𝑊3 represents the weight matrix of 

the convolution operation. 𝑏1, 𝑏2, 𝑏3  are biases, these are 

adaptation constants. Lastly, the attention weights are 

multiplied by 𝑖2 to yield the output, where the symbol ⊗ 
denotes element-wise multiplication and 𝑜𝑢𝑡 represent the 

output. This framework incorporates an attention 

mechanism, efficiently emphasizing the critical features in 

the input maps. The corresponding mathematical 

equations are given as follows, from Eqs. (2)–(6). 

 

𝑔1 = 𝑓(𝑊1 ∗ 𝑖1 + 𝑏1)                   (2) 

𝑔2 = 𝑓(𝑊2 ∗ 𝑖2 + 𝑏2)                        (3) 

𝑔 = 𝑔1 + 𝑔2                                     (4) 

𝑎 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊3 ∗ 𝑔 + 𝑏3)               (5) 

𝑜𝑢𝑡 = 𝑎 ⊗ 𝑖2                                     (6) 

 

This approach allows us to adjust the features of 𝑖2 by 

emphasizing the relevant features and weakening the less 

important features using the attention factor. As a result, it 

is easier to perform focused and effective tasks, which can 

improve model performance. 

As mentioned earlier, our study is based on a pseudo-

3D convolutional CNN model. When evaluating using test 

data, we use the weights of both models. The approach is 

to set equal weights during the voting process. 

Our unique approach, which involves applying the 

obtained weights to perform an average vote, providing 

numerous benefits. Enhance model diversity, reduce the 

risk of overfitting, and allow prediction errors to average 

out. This method effectively integrates the model’s 

predictive capabilities, reducing model complexity and 

reducing the risk of overfitting (Fig. 5). Therefore, our 

approach reduces and balances model integration and 

overfitting to improve the performance of pseudo-3D 

CNN models in medical image segmentation tasks. 
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Fig. 5. Proposed average voting. 

In the present study, a collective dataset, designated as 

“Dataset 15: Test set for CSI 2014 Vertebra Segmentation 

Challenge”, encompassing ten exemplary spinal samples 

(Case 1 through Case 10), was meticulously selected. 

Additionally, an isolated case manifesting a compression 

fracture, as documented on SpineWeb [10], was 

incorporated, culminating in a comprehensive 

experimental ensemble. Among the healthy vertebral 

specimens, a subset comprising five cases (Case 1 to Case 

5) was delineated for the learning phase, serving as the 

foundational basis for algorithm training. The remainder 

consisted of five original vertebrae along with 

compression fractured vertebrae, confirming the 

robustness and generalizability of the developed 

algorithmic framework in identifying and delineating 

spinal anatomy and pathology. It is treated as validation 

data for the purpose. 

IV. RESULT AND DISCUSSION 

Table I presents the degree of accuracy, as denoted by 

the correct label, achieved in the extraction of the healthy 

spinal region from the unlearned data, employing the 

methodology of Shigeta et al. [1], the 3×3×3 range, and 

both 1×1×1 and 7×7×7 ranges with attention learning.  

TABLE I. THE DEGREE OF COINCIDENCE BETWEEN SEGMENTED 

HEALTHY SPINE REGION AND CORRECT LABEL REGION FOR EACH 

UNLEARNED SPINE DATA 

Dice Coefficient 

Case No. Shigeta’s Method 3×3×3 range 
1×1×1 and 7×7×7 

with attention 

6 0.937 0.940 0.943 

7 0.963 0.968 0.973 
8 0.964 0.969 0.974 

9 0.957 0.957 0.969 
10 0.966 0.969 0.975 

Average 0.957 0.961 0.968 

 

When we analyzed Shigeta et al.’s [1] method that 

combined the 7×7×7 range with the 1×1×1 and 7×7×7 

range attention mechanisms, we found that the latter 

combination had the highest concordance rate. We 

compared Dice Coefficient values of the three methods, 

namely methods using Tukey’s multiple comparison 

method. As a result, statistically significant differences 

were found between all pairs among three methods (p < 

0.05). This result suggests that combining multiple ranges 

and attention mechanisms may improve accuracy at a 

single range. 

Fig. 6 show the spine extraction results for unlearned 

healthy spine data (Case No. 10) by each method. It 

represents the original CT image (Fig. 6(a)), the correct 

label (Fig. 6(b)), and the extraction result (Fig. 6(c)), 

respectively. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 6. Spine segmentation results: (a) by Shigeta et al. [1].; (b) 3×3×3 

range; (c) average votes with 1×1×1 and 7×7×7 ranges using attention 
gate. 

Furthermore, by considering the shortcomings of each 

method as “individuality” and complementing each other’s 

strengths and weaknesses, extraction performance can be 

improved. We observed that methods using attention 

mechanisms are better at finding and highlighting detailed 

features and outperform other methods in extracting 

complex anatomical structure. However, the applicability 

and computational cost of each method requires further 

research. 

Table II shows the degree of accuracy by correct label 

as the result of extracting the healthy spinal region from 

the unlearned data by the different range of average labels 

with attention learning. 

TABLE II. THE DEGREE OF COINCIDENCE BETWEEN SEGMENTED 

HEALTHY SPINE REGION AND CORRECT LABEL REGION FOR EACH 

UNLEARNED SPINE DATA 

Dice Coefficient 
Case No. 1×1×1 with 

attention 

3×3×3 with 

attention 

5×5×5 with 

attention 

7×7×7 with 

attention 

4 0.951 0.950 0.950 0.953 

5 0.962 0.966 0.966 0.965 

6 0.939 0.882 0.882 0.916 
7 0.970 0.967 0.967 0.967 

8 0.968 0.966 0.966 0.970 

9 0.959 0.954 0.954 0.952 
10 0.972 0.968 0.968 0.972 

Average 0.960 0.950 0.950 0.956 
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Table III shows the Dice scores and related references 

of prominent spinal segment studies conducted in recent 

years. As is evident from this table, various algorithms and 

methodologies have been proposed and their effectiveness 

and performance verified. Although our proposed method 

achieved a Dice score of 0.968, which outperforms all 

other studies listed, these results should be interpreted with 

caution as different studies used different datasets. is 

needed. Therefore, although the dataset is not consistent 

across all studies, our method shows competitive, if not 

superior, performance. Comparative experiments using 

common datasets are essential to conclusively establish 

that our proposed method is superior to previous models. 

We currently lack comprehensive data to directly compare 

performance with other studies. 

TABLE III. DICE COEFFICIENT FOR SPINAL SEGEMENTATION IN 

RECENT STUDIES 

Team Dice score 
You [11] 0.86 

Rehman [12] 0.94 
Carson [13] 0.92 
Qadri [14] 0.87 
Dabiri [15] 0.96 

Sekuboyina [16] 0.92 
Zhang [17] 0.94 

Khandelwal [18] 0.92 

Tao [19] 0.95 
Chen [20] 0.87 

Proposed 0.968 

 

In this study, we introduced diversity through ensemble 

learning, allowing the model to capture a wider range of 

features. Additionally, by blurring the image 

preprocessing step, we aimed to capture more global 

structure by obtaining a lower-resolution representation. 

Moreover, rather than directly using the blurred results, we 

obtained the difference to capture aspects of spatial 

variation. This approach improved overall prediction 

accuracy by allowing us to focus on more important 

structural features while suppressing noise and 

unnecessary details. 

An important problem for future research is the 

improvement of vertebral compression assessment, which 

is expected to improve accuracy. Furthermore, techniques 

used in more advanced ensemble learning have the 

potential to achieve superior predictive performance for 

further exploration and optimization. 

V. CONCLUSION 

In this research, we attempted to apply CNN to medical 

image processing. Specifically, we utilized pseudo-3D 

convolutional CNN models, incorporated multiscale 

blurring techniques on the data to obtain multiresolution 

representations, and equipped these models with attention 

mechanisms for CT imaging. We adopted an ensemble 

approach, specifically a weighted average vote using 

weights derived from both models during training. For 

predictions using test data, we leveraged the weights of 

both models to automatically extract spine regions more 

accurately. This approach resulted in an average accuracy 

of 96.8% on the test data. 

Our findings show that while three-dimensional feature 

learning exhibits a certain level of effectiveness in 

improving extraction accuracy, there is a necessity for 

further scrutiny of the technique. Future prospects for this 

research could involve the enlargement of our dataset and 

the adoption of more advanced ensemble methods, which 

hold potential for enhancing prediction accuracy. 

Furthermore, we contemplate incorporating measures to 

appropriately extract data that deviates from normal 

vertebral morphology or CT values, as observed in cases 

of fractures or tumors. 
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