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Abstract—Salient Object Detection (SOD) can mimic the 

human vision system by using algorithms that simulate the 

way how the eye detects and processes visual information. It 

focuses mainly on the visually distinctive parts of an image, 

similar to how the human brain processes visual information. 

The approach proposed in this study is an ensemble 

approach that incorporates classification algorithm, 

foreground connectivity and prior calculations. It involves a 

series of preprocessing, feature generation, selection, 

training, and prediction using random forest to identify and 

extract salient objects in an image as a first step. Next, an 

object proposals map is created for the foreground object. 

Subsequently, a fusion map is generated using boundary, 

global, and local contrast priors. In the feature generation 

step, different edge filters are implemented as the saliency 

score at edges will be high; additionally, with the use of 

Gabor’s filter the texture-based features are calculated. The 

Boruta feature selection algorithm is then used to identify the 

most appropriate and discriminative features, which helps to 

reduce the computational time required for feature selection. 

Ultimately, the initial map obtained from the random forest, 

along with the fusion saliency maps based on foreground 

connectivity and prior calculations, is merged to produce a 

saliency map. This map is then refined using post-processing 

techniques to acquire the final saliency map. The approach 

we propose surpasses the performance of 17 cutting-edge 

techniques across three benchmark datasets, showcasing 

superior results in terms of precision, recall, and f-measure. 

The proposed method performs well even on the DUT-

OMRON dataset, known for its multiple salient objects and 

complex backgrounds, achieving a Mean Absolute Error 

(MAE) value of 0.113. The method also demonstrates high 

recall values (0.862, 0.923, 0.849 for ECSSD, MSRA-B and 

DUT-OMRON datasets, respectively) across all datasets, 

further establishing its suitability for salient object detection.

Keywords—computer vision, salient object detection, 

random forest, classification, visual attention, visual saliency, 

video surveillance 

I. INTRODUCTION

Computer Vision and Video Surveillance have emerged 

as crucial research areas in the rapidly developing field of 

technology. Computer Vision, is a subset of artificial 
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intelligence, enables computers with the ability to interpret 

and discern visual data. This is achieved through the use 

of sophisticated cameras and deep learning algorithms, 

mirroring human vision abilities. This allows machines to 

accurately recognize and classify objects in digital 

images and videos. In video surveillance, the capability 

to recognize salient objects emphasizes items of interest 

in a scene, such as people, vehicles, or any unusual 

objects or activities. This feature allows the surveillance 

system to concentrate on potentially important events, thus 

improving the surveillance system’s efficiency and 

effectiveness. For more details on the evolution of salient 

object detection methods, please refer to the related survey 

papers [1, 2]. The Human Vision System (HVS) uses 

various sensors to identify and process visual 

information. It primarily relies on the visual sensor, the 

eye, which contains specialized sensory cells known as 

photoreceptors. These photoreceptors translate light into 

electrical signals that the brain can elucidate as images. 

The eye’s photoreceptors, rods and cones, are responsible 

for detecting light and colour, respectively. The HVS 

also comprises the optic nerve, which conveys visual data 

from the eye to the brain. This data is then interpreted by 

the visual cortex, transforming the signals received from 

the eye into images. Our daily visual perceptions are 

formed through the collaboration of sensors and neural 

pathways [3]. Visual saliency is when an object, person, or 

pixel catches our attention by standing out from its 

surroundings in the visual field. Machines employ a 

technique known as salient object detection to address the 

challenge of visual attention that humans can easily handle. 

The significance of Salient Object Detection (SOD) in 

computer vision applications stems from its ability to 

minimize computing complexity [1].  

The human brain can quickly process information about 

the surrounding environment. As we acquire knowledge 

via our senses, it is important to note that the more 

profound regions of the brain do not fully analyze every 

single piece of sensory data that enters. The reason for this 

is that our perception of information varies in terms of the 

level of attention and engagement, leading the brain to 

selectively exclude the majority of the incoming sensory 

input. Identifying all the exciting targets in the visual field 
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would be a difficult task, even for a highly sophisticated 

biological brain. Humans address this challenge by 

breaking the visual field into smaller segments [3]. In 

visual scene analysis, visual attention mechanisms 

facilitate the serialization of processing by breaking up the 

scene into smaller regions. Visual saliency plays a critical 

role in this process, as pixels, objects, or persons with high 

saliency are likelier to capture our attention than their 

neighbours. Detecting relevant information from cluttered 

visual scenes whilst filtering out irrelevant information is 

known as visual attention. It suggests that visual attention 

requires at least the following fundamental elements 

in [3, 4]: Visual attention involves several processes, 

including selecting the region of interest within the visual 

field, identifying important feature characteristics and 

values, regulating information flow across the network of 

neurons in the visual system, and gradually shifting 

attention to other locations over time. 

A general-purpose vision is only possible with attention, 

which is continuous and automatic. Visual attention is 

derived from two distinct sources: (1) bottom-up, which is 

pre-attentive and based on the saliency of the retinal input, 

and (2) the top-down approach, characterized by its slower 

pace and reliance on memory and conscious intention, is 

propelled by the specific objective at hand. For a model 

to effectively detect saliency, it must fulfill three 

fundamental requirements that are universally 

recognized by scholars in the field [5]. 

The first requirement is accurate detection, where the 

model should ideally distinguish between true salient areas 

and false salient areas in the background. The second 

requirement underscores the significance of high 

resolution, which is crucial for the precise recognition 

of salient objects and the maintenance of the original 

image details. Finally, the model should have 

computational efficiency, allowing it to quickly identify 

salient areas, given that these areas are the starting points 

for many complex processes. There are various 

applications of bottom-up methods for salient object 

detection, and saliency detection itself is becoming 

increasingly popular as a useful tool in the fields of 

computer vision and artificial intelligence [6–8]. This tool 

significantly simplifies the intricacies involved in image 

analysis and speeds up processing durations.  

Saliency has found various applications across different 

domains, such as image segmentation [9–12] object 

recognition and detection [13–15], anomaly 

detection [16, 17], image retrieval [18, 19], image 

compression [20], object classification [21], object 

tracking [22, 23], image retargeting and 

summarization [24, 25], alpha matting [25], target 

detection [26], video object segmentation [27], video 

summarization [28], Image and video compression [29], 

Medical image analysis [30], Virtual reality and 

augmented reality [31], Human-Computer Interaction 

(HCI) [32] and user perception of digital video 

content [33]. Integrating various methods has the 

potential to enhance the strength of object detection. 

Certain methods may excel in specific aspects, such as 

capturing global context, handling local details, or 

considering spatial relationships. A more robust and 

comprehensive detection can be achieved by effectively 

exploiting the individual strengths of these techniques. 

With this motivation, we merged the unique features of 

popular methods, resulting in a more comprehensive 

approach that can effectively handle a wide range of image 

features. 

The rest of this document is outlined as follows. The 

related work is given as part of Section II, the description 

of popular datasets used for SOD is given under Section III, 

and the proposed method of saliency is introduced in 

detail under Section IV. Saliency assignment and 

refinement of spatial data are covered under Section V. 

The combined saliency map with enhancement is given in 

Section VI. Details of evaluation metrics are part of 

Section VII. A comparative study of qualitative and 

quantitative results is available in Section VIII. The 

quintessence of this work has been summarized in 

Section IX. 

II. RELATED WORK

In the realm of computer vision, saliency detection has 

witnessed noteworthy advancements in recent times. There 

are three general categories of saliency estimation 

methods: biological, purely mathematical, and a fusion of 

both. These methods typically use a combination of pixel 

intensities, colours, and orientations to identify salient 

regions in an image and understand their relationship with 

the surrounding areas. 

Contrast is the degree of differentiation between two or 

further pixels or regions in an image. Saliency values can 

be computed based on the contrast by measuring the 

distance between two features. When using local-contrast 

methods, saliency scores are typically higher at the edges 

of salient objects, as Jian et al. [34] demonstrated in their 

saliency detection work. This approach emphasizes the 

entire salient object to enhance its saliency. Local contrast-

based: The detection of salient regions in an image using 

the local contrast-based approach entails determining the 

uncommonness of image features within a limited spatial 

extent. Koch and Ullman’s [35] biologically plausible 

architecture formed the basis for previous method [36]. 

The Difference of Gaussians method is used for the 

calculation of centre-surround contrast. Frintrop et al. [37] 

created a technique that utilizes the Itti’s approach but 

computes centre-surround disparities with square filters 

and integrated images to speed up calculation. These are 

purely computational methods [13, 38, 39] and do not 

adhere to biological vision principles. Saliency was 

estimated using centre-surround feature distances as 

described in [13, 38]. To estimate saliency, a heuristic 

saliency measure is applied to the histogram thresholding 

of feature maps obtained by Hu et al. [39]. Models of the 

biological world and simulations of the computational 

world make up two different categories of methods. In 

Ref. [40], the creation of maps is illustrated with the help 

of Itti’s state-of-the-art, but the normalization is performed 

via a graph-based approach.  

As a biologically plausible saliency detection model, 

the maximization of information using a computational 
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model is another method [41]. Jiang et al. [42] achieved 

salient object segmentation using boundary and super 

pixel techniques. According to Perazzi et al. [43], an 

image’s salient region can be determined by its uniqueness 

and space distribution. In Ref. [44], contrast features were 

computed across different scales of an image using a 

hierarchical model, and fused into one map with a 

graphical model. In global-contrast-based models, salient 

regions are detected based on the colour contrast over the 

entire image, enabling an object to be separated from its 

surroundings. These models can identify prominent parts 

of an image in a uniform and operationally simple manner. 

The low-level features (colour and brightness) are used. 

Achanta et al. [45] described a frequency-tuned strategy 

for detecting centre-surround contrast employing colour 

and brightness in the frequency domain as characteristics. 

With a low-rank matrix and sparse noise, Shen and 

Wu [46] decompose an image into two factors, where the 

first one indicates regions that fall as background, and the 

next shows the salient regions. 

Cheng et al. [47] proposed an abstract representation 

method based on a Gaussian Mixture Model (GMM) that 

simultaneously calculates global contrast and spatial 

coherence differences to detect salient regions at a 

perceptional homogeneous level. Using light fields, 

Li et al. [48] suggested a method to tackle complex 

saliency detection challenges, such as comparable 

foreground and background in an image. An energy-

efficient framework for detecting salient regions was 

enhanced by a method proposed by Wang et al. [49], 

which estimated segmentation with an auto-context model. 

With graph-based manifold ranking based on affinity 

matrices, Yang et al. [50] ranked the similarity between 

images and foreground and background cues and 

successfully detected saliency between the two. Using an 

unsupervised approach, according to Shiva et al. [51], 

unlabeled images identify patches the most likely to 

contain salient objects. The objects are located by 

sampling the regions in the saliency maps. Using a set of 

background templates as the basis for reconstruction, 

Li et al. [52] propose a saliency measure using dense and 

sparse representation errors of each image region, and they 

create a saliency map by integrating the multiscale 

reconstruction errors. As deep learning advanced, many 

researchers began to enhance neural networks for saliency 

detection. Kuen et al. [53] proposed a recursive attention 

neural network that used spatial transformation and 

recursive network components to recognize salient objects. 

It can improve the saliency findings of the sub-regions and 

handle context-aware information in that framework. 

Cholakkal et al. [54] suggested a top-down technique for 

saliency detection that included linked image 

classification blocks and a class-aware sparse coding 

scheme. Murabito et al. [55] suggested a top-down 

saliency map generation using a deep architecture guided 

by object categorization. 

Saliency detection using supervised learning: Saliency 

detection methods have made use of high-level 

characteristics through the utilization of supervised 

machine learning techniques. These methods create 

regional descriptors by extracting complex image features 

and predicting saliency scores at the regional level using a 

classifier or regressor [56]. Kim et al. [57] suggested a 

saliency detection method based on learning, which 

estimates global saliency by utilizing high-dimensional 

colour transformation and local contrast through 

regression. Srivatsa and Babu [58] estimate the regions 

that fall foreground in an RGB image, which utilizes 

objectness proposals to obtain smooth and correct saliency 

maps. In terms of saliency maps, deep learning models 

based on Convolutional Neural Networks (CNNs) acquire 

robust features and produce better quality saliency 

maps [59–62].  

Using a deep neural network trained on multiscale 

features from CNNs, salient regions can be detected with 

the help of multiscale features [59]. Additionally, deep 

learning-based mechanisms combined with global and 

local context cues result in better salient object 

detection [60]. Object saliency is evaluated at the pixel 

level and segment-wise for deep contrast network 

detection [61]. Full Convolutional Networks (FCNs) are 

used to identify human gaze saliency [62]. Cao et al. [63] 

suggested an improved model based on the You Only 

Look Once V3 (YOLO V3) Algorithm for object 

recognition in remote sensing photos in 2020. Recently, 

Jian et al. [64] designed a model to detect a salient region 

based on location and background cues. A practical 

method based on sparse background features and spatial 

position prior to attractive objects is proposed in [65]. An 

unsupervised method, Topo-Prior-Guided saliency 

detection System (TOPS), is proposed by Peng et al. [66]. 

Yu et al. [67] proposed a local coherence loss to propagate 

the labels to unlabeled regions based on image features and 

pixel distance to predict integral salient regions with 

complete object structures; also, designed a saliency 

structure consistency loss as a consistent mechanism to 

ensure consistent saliency maps are predicted with 

different scales of the same image as input, which could 

be viewed as a regularization technique to enhance the 

model generalization ability.  

A weakly supervised salient object detection method 

using point supervision is proposed in [68]. An additional 

supervision mechanism, a self-Supervised Equivariant 

Attention Mechanism (SEAM), is proposed in [69]. Using 

diverse weak supervision sources, a unified framework is 

proposed for training saliency detection models [70]. The 

framework in [71] generates the learning curriculum and 

pseudo ground truth for supervising the training of deep 

salient object detectors based on combining an intra-image 

fusion stream and an inter-image fusion stream. A simple 

GateNet is proposed in [72] to solve interference and 

disparity between encoder blocks. Qin et al. [73] use a 

predict-refine architecture, BASNet, and a hybrid loss to 

detect boundary-aware salient objects. U-Net [74], a 

representative example of a fully convolutional neural 

network, has achieved remarkable success in medical 

image segmentation. Its effectiveness in suppressing 

background noise is achieved through a two-step process: 

jointly employing an encoder and decoder to process 
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image data, and then integrating the information using skip 

connections. 

III. DATASETS 

The development of innovative approaches for 

identifying salient features has resulted in the development 

of new sets of data for the purpose of evaluating various 

cutting-edge techniques. A brief description of the 

different datasets used in this paper for result analysis is 

provided below. 

A. MSRA-B 

MSRA-B [75] is a dataset for the detection of salient 

objects. More than 5,000 images are included in this 

dataset. The majority of the images in the dataset primarily 

consist of a single dominant entity. Natural scenes, 

animals, indoor and outdoor images are included in the 

collection. Sample images of MSRA-B with our results are 

depicted in Fig 1. 

B. ECSSD 

The results are also evaluated using a popular and 

challenging data set, the ECSSD [44]. It has been designed 

to enhance image segmentation and research in complex 

scene saliency. These images are paired with 

corresponding ground-truth masks. Several images in the 

ECSSD dataset include complex scenes, varied textures, 

and low-contrast colours. A total of 1,000 natural images 

were used in the analysis. Sample images of ECSSD with 

our results are depicted in Fig. 2. 

C. DUT-OMRON 

The dataset has hand-picked 5,168 images from over 

140,000 nature photographs. These photographs have one 

or more prominent items and backgrounds that are 

relatively complicated. Our proposed method provides 

good result even for such type of challenging images. A 

sample images of DUT-OMRON [50] with our results are 

shown in Fig. 3. 

 

 

Fig. 1. MSRA dataset: (a) Input images (b) Ground truth (c) Our results. 

 

Fig. 2. ECSSD dataset: (a) Input images (b) Ground truth (c) Our results. 

 

Fig. 3. DUT-OMRON: (a) Input images (b) Groundtruth (c) Final saliency map of our method.
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IV. PROPOSED METHOD FOR SALIENCY DETECTION 

The proposed approach for salient object detection 

combines several computer vision techniques and machine 

learning algorithms. Our method consists of several steps, 

including preprocessing the input image and applying 

various edge filters such as Sobel, Prewitt, Scharr, 

Gaussian, and Gabor to extract relevant features. We then 

use a feature selection algorithm to select the unique 

features and apply the Random Forest classifier to predict 

the initial saliency map. Ultimately, the saliency map is 

subjected to a thresholding technique to achieve the initial 

salient object. In the subsequent stage, local and global 

contrast and prior background are computed to obtain the 

prior calculation. 

The SOD scheme is depicted in Fig. 4. 

 

 

Fig. 4. Proposed method for saliency detection. 

The saliency values of an image can be obtained 

through the application of the suggested method, which 

encompasses the subsequent procedures. 

Each step of the Algorithm 1 is explained below. 

 

Algorithm 1: Proposed method 

1) Input: RGB Image 

2) Output: Final saliency map 

3) S = RF (Boruta (Gabor(edge((I)))) 

4) 2-D superpixel over segmentation of images using 

SLIC 

5) Calculate sub-saliency map using foreground 

connectivity FG(S) 

𝐹𝐺(𝑆) =
∑ 𝑑(𝑃, 𝑃𝑘). 𝛿(𝑃𝑘)𝑁

𝑘=1

∑ 𝑑(𝑃, 𝑃𝑘). (1 − 𝛿(𝑃𝑘))𝑁
𝑘=1

 

6) Calculate fusion map by the calculation of priors Fmap 

𝐹𝑚𝑎𝑝 =
1

𝑍
(𝐵𝑛𝑑𝐶𝑜𝑛(𝑝) × 𝐷𝐿𝑖

× 𝐷𝐺𝑖
) 

7) Combine the initial and fusion map 

𝑆𝑎𝑙𝑚𝑎𝑝𝑓𝑖𝑛𝑎𝑙 =
1

𝑧
(𝑤1𝑝(𝑤2𝐹𝐺𝑃) + 𝑤3𝑝(𝑤4𝐹𝑚𝑎𝑝)) 

8) Post-processing: 

Spp(i, j) = 1 if S(i, j) ≥ TH and Pmax(i, j) > Pbg(i, j) 

= 0 otherwise 

9) Final saliency map 

10) End 

 

A. Creating the Initial Saliency Map with the Random 

Forest Method 

The steps involved in the proposed algorithm are: 

1. Preprocessing steps 

a) Resize the input image to a fixed size. 

b) Normalized the pixel values to the range [0, 1]. 

c) Applied edge filters such as Sobel, Roberts, Canny, 

Gaussian with different sigma values, Prewitt, Scharr 

to generate edge-based features. 

d) Applied Gabor filter orientations in different 

directions and scales to generate texture-based 

features. 

2. Feature selection: Use Boruta algorithm to select the 

most relevant features. 

3. Training: Train a random forest classifier using the 

selected features. 

4. Saliency map generation (Prediction): Generate an 

intermediate saliency map by applying the trained random 

forest classifier to the input image. 

The sequential application of this step is: 

S rf = Thresholding (RF (Boruta (Gabor(edge((I)))))) 

S stands for the intermediate saliency map. I will be the 

preprocessed image, the edge is the edge filter function, 

Gabor is the Gabor filter bank function, Boruta is the 

feature selection algorithm, and RF is the random forest 

classifier function. The parentheses denote function 

composition or sequential application. Texture features 

capture the visual patterns and structures in the image, 

which are essential for discriminating between salient and 

non-salient regions. Contrast features accentuate 

variations in color or intensity among adjacent pixels, 

facilitating the differentiation of prominent objects from 

their background. On the other hand, edge features capture 

the sudden changes in pixel values, playing a crucial role 

in defining the boundaries of salient objects. Gabor filters, 

often used in image processing, are able to catch the 

frequency and orientation details of an image. This makes 

them perfect for tasks like edge detection, texture analysis, 

and object recognition. These filters are designed to mimic 

the response regions of primary cells in the mammalian 

visual cortex, which are uniquely capable of detecting 

oriented edges and light bars. The creation of these filters 

involves modulating a Gaussian function with a sinusoidal 

wave, resulting in filters that are sensitive to edges and 

textures of varying orientations and scales. When applied 

to an image, Gabor filters can extract key features for 

saliency detection, such as edges, ridges, and textures. The 

Boruta algorithm is then employed to identify the most 

significant and distinguishing features for detecting 

prominent objects. These generated features undergo a 

feature selection process to find the most relevant and 

discriminative features for salient object detection. The 

selected features confirmed by the Boruta algorithm, are 

used to train a random forest classifier. This classifier 

generates a saliency map that highlights the regions in the 

input image most likely to contain salient objects. The 

model leverages its learned associations between Gabor 

and other edge filters, such as Roberts, Sobel, Canny, 

Gaussian (with sigma = 3, 7), median filter (with 

sigma = 3), and Prewitt and Scharr filters. The random 
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forest algorithm, a well-known technique in machine 

learning, is capable of handling numerous features and 

non-linear relationships among them, making it effective 

in analyzing complex images. We employed random 

forests to understand the relationship between low-level 

visual features, such as color, texture, and edge 

information, and high-level semantic concepts, like 

objects and scenes. For training, a labeled dataset is used, 

with the extracted features used as input and the ground 

truth saliency maps as output. The algorithm learns to 

predict saliency maps from the input features. The 

hyperparameters are set with a tree count of 200 and a 

maximum depth of 10 for each tree. Once the random 

forest is trained, we use it to predict saliency maps for new 

images. The test images undergo identical feature 

extraction procedures, and the random forest algorithm 

utilizes the acquired knowledge to make predictions. 

The continuous-valued map, indicating the likelihood of 

each pixel being salient, is converted into a binary mask 

that segments the salient object from the background. The 

threshold value of 0.5 is utilized for achieving the optimal 

detection of the salient object. 

B. Foreground Connectivity 

The use of superpixels to detect salient objects has been 

demonstrated in recent works [43, 46, 76]. We chose the 

Simple Linear Iterative Clustering (SLIC) algorithm 

approach for superpixel segmentation since it is quick, 

precise, efficient and low computation cost. The 

segmentation on image I to form superpixels X = [X1, ..., 

XK]. The salient object boundary of an image should be 

well-preserved for receiving structure information. To 

separate the original image into K small superpixels, we 

use the SLIC [77]. Pixels with similar values are grouped 

using this algorithm. It is possible to reduce the complexity 

of image processing operations, such as segmentation, by 

using these regions. SLIC also makes the whole algorithm 

more efficient. Foreground extraction aims to separate 

foreground (desirable) information from background 

(undesirable) information in an image or video feed. To 

handle the issue of efficiently extracting a foreground 

object in a complex environment whose background 

cannot be easily subtracted. The paper is implemented 

with a saliency measure called foreground connectivity, 

which calculates the foreground connectivity of a 

superpixel S as illustrated in [58]. The Objectness map is 

created to collect superpixels that contain the salient object. 

We apply the foreground connectivity measure to allocate 

weights to the superpixels for the foreground. To generate 

an objectness map, we adapted the approach in [58], the 

objectness map is generated once the object proposals 

have been gathered. We can determine how likely a 

window is to contain an object by evaluating its objectness 

score. A pixel-wise objectness score (PixObj) indicates 

whether a pixel is part of an object. The value of the 

PixelObj is calculated as 

𝑃𝑖𝑥𝑂𝑏𝑗(𝑝) = ∑ 𝑟𝑖𝐺𝑖 (𝑦, 𝑧)𝑘
𝑖=1    (1) 

where r1, r2, r3, ..., rn are the objectness scores of the 

proposals that include pixel p are denoted as Gi. Where Gi 

is a Gaussian window with the same dimensions as the 

given proposal. The relative x and y coordinates of pixel p 

with respect to the given proposal are represented by y and 

z, respectively. By summing up the pixel-wise object 

probability in a region of superpixel, we can construct the 

objectness map for that superpixel region. 

𝑂𝑏𝑗𝑒𝑐𝑡𝑛𝑒𝑠𝑠(𝑅) = ∑ 𝑃𝑖𝑥𝑂𝑏𝑗 (𝑝𝑖)𝑖∈𝑅   (2) 

An instance of pi is a pixel in super pixel region R. 

The saliency measure referred to as “foreground 

connectivity” determines saliency values by taking into 

account the connectivity of superpixels to the 

approximated foreground. Using super-pixels as nodes, we 

build a graph. Each edge of an image corresponds to the 

Euclidean distance among the adjacent superpixels. A 

Superpixel P’s foreground connectivity is given by 

𝐹𝐺(𝑃) =
∑ 𝑑(𝑃,𝑃𝑘)·𝛿(𝑃𝑘)𝑁

𝑘=1

∑ 𝑑(𝑃,𝑃𝑘)·(1−𝛿(𝑃𝑘))𝑁
𝑘=1

   (3) 

where d (P, Pk) denotes the shortest distance between P to 

Pk and δ(.) is 1 for a superpixel if it is estimated as 

foreground by the objectness map and the total number of 

superpixels is N. The reciprocal of FG (i.e., lower 

foreground weights) is used as the foreground weight wfg 

and lower numerator value when the superpixel exhibits a 

greater resemblance to the estimated foreground. The 

initial saliency map will be estimated from the 

concatenated features mentioned previously. 

C. Calculation of Boundary Prior 

This paper is inspired by Zhu et al. [77], Natural images 

have different spatial layouts for object regions and 

background areas, i.e., A region with an object is much 

less connected to the image boundary than a region with a 

background. To compute how strongly a region R is 

associated with the boundaries of an image, known as 

boundary connectivity given by 

𝐵𝑛𝑑𝐶𝑜𝑛(𝑅) =
|{𝑝|𝑝 ∈ 𝑅,𝑝 ∈ 𝐵𝑛𝑑}|

√|{𝑝|𝑝 ∈ 𝑅}|
   (4) 

Image boundary patches are identified by Bnd, whereas 

image patches are identified by p. An intuitive 

interpretation of the square root is that it represents the 

ratio between the perimeter on the boundary of a region 

and the perimeter on the overall boundary. In the next step, 

all the superpixels (p, q) are connected to create an 

undirected weighted graph dapp (p, q) reflecting the 

Euclidean distance between their average colors in CIE-

Lab. The graph defines the geodesic distance dgeo (p, q) 

between any two superpixels as the aggregated edge 

weights along the shortest path between them. 

𝑑𝑔𝑒𝑜(𝑝, 𝑞) = 𝑚𝑖𝑛 ∑ 𝑑𝑎𝑝𝑝 (𝑝𝑖 , 𝑝𝑖+1)𝑛−1
𝑖=1   (5) 

The spanning area of each superpixel p as 

𝐴𝑟𝑒𝑎(𝑝) = ∑ 𝑆𝑁
𝑖=1 (𝑝, 𝑝𝑖)   (6) 

where the number of superpixels is N. Using Eq. (7), one 

calculates a soft area for the region where p lies. In the 

summation, S (p, pi) characterizes the amount that pi 

contributes to the area of p, and is in [0, 1]. The 
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computation of the length along the boundary is performed 

as: 

𝐿𝑒𝑛𝑏𝑛𝑑(𝑝) = ∑ 𝑆𝑁
𝑖=1 (𝑝, 𝑝𝑖) 𝛿 (𝑝𝑖 ∈ 𝐵𝑛𝑑)  (7) 

If the superpixels are on the image boundary then δ(.) is 

1 otherwise 0. The boundary connectivity is given by 

𝐵𝑛𝑑𝐶𝑜𝑛(𝑝) =
𝐿𝑒𝑛𝑏𝑛𝑑(𝑝)

√𝐴𝑟𝑒𝑎(𝑝)
   (8) 

Johnson’s approach [78] is used to compute the shortest 

pathways between all superpixel pairs efficiently. 

D. Global and Local Contrast Prior 

The global contrast of the ith superpixel is given by 

𝐷𝐺𝑖
= ∑ 𝑑(𝑔𝑖 , 𝑔𝑗)𝑁

𝑗=1    (9) 

where d (gi, gj) denotes the Euclidean distance between the 

ith and jth superpixel’s color value gi and gj. 

Local contrast of color features is defined as 

𝐷𝐿𝑖
= ∑ 𝑤𝑖,𝑗

𝑝𝑁
𝑗=1  𝑑(𝑔𝑖 , 𝑔𝑗)   (10) 

where, 

𝑤𝑖,𝑗
𝑝

=
1

𝑅𝑖
exp (–

1

2𝜎𝑝
2 ∥ 𝑝𝑖 − 𝑝𝑗 ∥2

2  (11) 

where pi ∈ [0, 1] × [0, 1] denotes the normalized position 

of the ith superpixel and Ri is the normalization term. The 

weight function in Eq. (11) is commonly employed in 

various applications, we adapt this function to assign more 

weight to neighboring superpixels. 𝜎𝑝
2 is set to the value 

0.25 [57]. 

V. SALIENCY ASSIGNMENT OF OUR PROPOSED METHOD 

Cheng et al. [79] suggested an approach to combine the 

two saliency maps. The method used is to multiply the two 

maps pixel by pixel here a fusion map is created by 

combining all the priors above as shown below: 

𝐹𝑚𝑎𝑝 =
1

𝑍
(𝐵𝑛𝑑𝐶𝑜𝑛(𝑝) × 𝐷𝐿𝑖

× 𝐷𝐺𝑖
)  (12) 

In general, the saliency of several cues is combined 

using a heuristic method involving weighted summation or 

multiplication. Instead, our foreground weights and 

background weights are merged using an existing 

optimization framework adopted by [58] and is defined as: 

∑ 𝑤𝑖
𝑓𝑔𝑁

𝑖=1 (𝑟𝑖 − 1)2 + ∑ 𝑤𝑖
𝑏𝑔

(𝑟𝑖)
2𝑁

𝑖=1 + ∑ 𝑤𝑖𝑗(𝑟𝑖 − 𝑟𝑗)2
𝑖,𝑗

 (13) 

where 𝑟𝑖 denotes the final saliency value assigned to 𝑝𝑖 

after minimizing the cost, 𝑤𝑖
𝑓𝑔

denotes foreground 

weights, 𝑤𝑖
𝑏𝑔

 denotes background weights associated 

with superpixel 𝑝𝑖. High 𝑤𝑖
𝑓𝑔

 encourages 𝑝𝑖 takes close 

to (0, 1) for high foreground and background, respectively. 
𝑤𝑖𝑗 is the smoothness coefficient. Parameter settings are 

the same initial map and vice versa for pixels near the 

definite background. The spatial map of saliency is 

calculated using. 

𝑆𝑃(𝑋𝑗) = exp (−𝑘
𝐴

𝐵
)   (14) 

where A = 𝑚𝑖𝑛𝑖∈𝐹(𝑑(𝑞𝑖 , 𝑞𝑗))  and B =

𝑚𝑖𝑛𝑖∈𝐵(𝑑(𝑞𝑖 , 𝑞𝑗)) are the Euclidean distance which is the 

minimum value that is calculated from the ith to a particular 

foreground pixel and a distinct background pixel. The 

value of the parameter k is assigned to 0.5. 

VI. COMBINED MAP OF SALIENCY AND ENHANCEMENT 

The initial map of saliency from Section IV.B and 

fusion map created from Section V are used to get the 

combined saliency map. We used the approach for 

combining saliency maps used by Kim et al. [57]. 

𝑆𝑎𝑙𝑚𝑎𝑝𝑓𝑖𝑛𝑎𝑙 =
1

𝑧
(𝑆𝑟𝑓 + 𝑤1𝑝(𝑤2𝐹𝐺𝑃) + 𝑤3𝑝(𝑤4𝐹𝑚𝑎𝑝))

 (15) 

𝑆𝑎𝑙𝑚𝑎𝑝𝑓𝑖𝑛𝑎𝑙  is enhanced using post-processing 

techniques: Non-Maximum Suppression (NMS) and 

Adaptive Histogram Equalization (AHE) are the post-

processing steps applied to the combined saliency map. 

Let M be a saliency map of an input image, and M(j, k) be 

the saliency value at the pixel position (j, k). NMS is 

performed by scanning the saliency map M and keeping 

only the maximum saliency value in a local 

neighbourhood. Let w and h be the width and height of the 

neighbourhood window, respectively. Then, the output 

saliency map 𝑀′ after NMS can be computed as: 

𝑀′(𝑗, 𝑘) = 0, 𝑖𝑓𝑀(𝑗, 𝑘) < 𝑚𝑎𝑥(𝑀(𝑗 − 𝑤 ∶ 𝑗 + 𝑤, 𝑘 − ℎ
∶ 𝑘 + ℎ)) 

𝑀′(𝑖, 𝑗) = 𝑀(𝑖, 𝑗) otherwise 

Adaptive Histogram Equalization is applied to enhance the 

contrast of the saliency map. The mathematical formula 

for AHE is represented as follows: 

𝑆𝑃𝑃(𝑗, 𝑘) = 1 𝑖𝑓 𝑆(𝑗, 𝑘) ≥  𝑇𝐻 

 𝑎𝑛𝑑 𝑃𝑚𝑎𝑥(𝑗, 𝑘) > 𝑃𝑏𝑔(𝑗, 𝑘) = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. 

let 𝑀′ be the saliency map after NMS and H (j) be the 

cumulative histogram of pixel intensities up to level j. The 

output enhanced saliency map 𝑀′′ can be computed as: 

𝑀′′(𝑗, 𝑘) = 𝐻(𝑀′(𝑗, 𝑘)) × 255 

where H(𝑀′(j, k)) is the normalized cumulative histogram 

of the pixel intensity at position (j, k) in the saliency map 

𝑀′, and 255 is the maximum pixel value. 

where 𝑆𝑃𝑃 is the final saliency map after post-processing, 

S is the initial saliency map obtained from the Random 

Forest classifier, TH is the threshold obtained from 

adaptive histogram equalization, 𝑃𝑚𝑎𝑥  is the maximum 

value of the probability distribution of each superpixel, 

and 𝑃𝑏𝑔 is the probability of the superpixel belonging to 

the background. The values of 𝑃𝑚𝑎𝑥  and  𝑃𝑏𝑔  are 

calculated using local and global contrast prior, and 

background prior. Finally, non-maximum suppression is 

applied to remove redundant salient regions, which gives 

the final saliency map. 

VII. DETAILS OF EVALUATION METRICS 

The proposed method is evaluated with famous object-

level evaluation metrics, i.e., Precision-Recall (PR), F-
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measure [80], Mean Absolute Error (MAE) [43], and 

weighted Fβ measure (Fbw) [81]. 

A. Details of Metrics 

Recall and Precision: Precision, also referred to as the 

positive predictive value, is determined by dividing the 

count of groundtruth pixels that are correctly identified as 

a salient region by the overall count of pixels that are 

classified as a salient region. The Recall value, or 

sensitivity, is directly related to the number of salient 

regions recovered from the ground truth. The calculation 

of PR entails the utilization of the binarized mask of the 

salient object and the ground-truth. Both the binarized 

mask of the salient object and the ground-truth are 

employed in order to determine the precision and recall. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, 𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

A range of thresholds, ranging from 0 to 255, is 

employed to convert the prediction into binary format. 

Each individual threshold produces a set of precision and 

recall values, which are utilized to create a PR curve that 

characterizes the performance of the model. The ratio of 

accurately classified prominent pixels to all prominent 

pixels in the ground truth map is known as precision. As 

the model’s performance improves, the PR curve 

approaches the upper left corner. The precision and recall 

rates are compared in the first evaluation. 

F-measure [80]: The F-measure rates for the binarized 

saliency map are computed with a threshold range of 

[0, 255] and are given by 

𝐹𝛽 =
(1+𝛽2) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝛽2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
   (16) 

like the existing methods [44–46, 82], the use of β2 is 

assigned with 0.3 to give more importance to precision. 

Mean Absolute Error (MAE) [43]: The Precision-

Recall curve does not include the fraction of pixels which 

have been correctly classified as non-salient. The presence 

of pixels mistakenly labelled as salient leads the saliency 

map to perform worse, despite being smooth and having 

greater values allocated to salient pixels. Using Mean 

Absolute Error (MAE) as suggested by Perazzi et al. [43], 

we can overcome the limitation of using precision and 

recall. We conduct an examination of the Mean Absolute 

Error (MAE) between the continuous saliency map M and 

the binary ground truth GT in order to ensure a more 

equitable comparison that takes into account these 

variables. The lower the MAE score, the model is close to 

ground truth, and better the performance. 

𝑀𝑒𝑎𝑛𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒𝐸𝑟𝑟𝑜𝑟 

=
1

𝑊 × 𝐻
∑ ∑ |𝑀(𝑎, 𝑏) − 𝐺(𝑎, 𝑏)|

𝑊

𝑏=1

𝐻

𝑎=1

 

 

All the above metrics are computed for the proposed 

method and alternate state-of-the-art algorithms are shown 

under quantitative section tables. We have used the code 

for evaluation measures given in [5]. 

VIII.  STATE-OF-THE-ART COMPARISONS 

Using three distinct datasets, we have conducted a 

comparative analysis between our model and a total of 17 

distinct state-of-the-art models. These datasets include 

MSRA-B [75], Extended Complex Scene Saliency Dataset 

(ECSSDs) [44], and DUT-OMRON [50]. Based on the 

evaluation results, our method is highly effective and a 

promising method for salient object detection. 

A method with high precision but poor recall suggests 

that it might work better for gaze-tracking experiments, 

but not for salient object segmentation. So, to maintain 

good values for recall and precision, the thresholded value 

chosen is 0.5. The saliency maps of our approach 

outperform alternate, state-of-the-art algorithm, the results 

of both quantitative and qualitative results are given under 

subsection A and B. 

A. Qualitative Results 

The performance of the proposed algorithm was 

evaluated against multiple state-of-the-art models, which 

includes models such as IT [36], GB [38], SR [39], AC 

[13], IG [45], MZ [38], MC [83], CHC [84], DSP [85], 

HDCT [57], BGFG [86], DSR [52], CNS [87], FCB [88], 

DCLC [89], DRFI [76] DGL [90] and the approach 

followed by the method is mentioned in Table I. 

When both the foreground and background are in 

similar colour, the method is robust with, the proposed 

approach with the addition of as a pre-processing step [91]. 

The proposed technique demonstrates a consistent and 

precise detection of salient regions across various image 

classes, surpassing many contemporary methods. The 

findings suggest that although the majority of existing 

methodologies excel at effectively handling relatively 

straightforward images containing only one or uniform 

objects, they encounter difficulties when it comes to image 

categories that feature intricate backgrounds, inadequate 

contrast, or multiple objects. Approaches that rely on 

boundary or background priors, such as BGFG, DGL, 

DSR, and MC, are incapable of detecting or uniformly 

emphasizing objects that come into contact with the image 

boundary, as evidenced by the accompanying illustration 

in the Figs. 5 and 6. The results indicate that while most 

existing techniques excel at processing relatively simple 

images with single or homogeneous objects, they struggle 

with image categories characterized by complex 

backgrounds, low contrast, or multiple objects. 

Techniques that employ boundary or background priors, 

such as BGFG, DGL, DSR, and MC fail to detect or 

uniformly emphasize objects that come into contact with 

the image boundary, as evidenced in the figure. Contrarily, 

our approach has effectively identified and consistently 

emphasized the salient objects that come into contact with 

the image boundaries. 
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TABLE I. METHOD AND THE APPROACH FOLLOWED 

S:NO Method Approach followed 

1 CHC Contrast ratio, spatial feature, colour contrast, and central prior 

2 DSP Background seeds, distribution prior, manifold ranking 

3 HDCT Contrast features, location, histogram, texture, shape features, learning-based approach, global and local colour 

4 BGFG Background and foreground prior 

5 DSR Background prior 

6 CNS Surroundedness and global colour contrast cues 

7 FCB Foreground and background cues, centre prior. 

8 DCLC centre prior, diffusion-based, manifold ranking, compactness local contrast 

9 DRFI Colour and texture contrast features, background features 

10 MC Boundary prior, graph-based, Markov random walk 

11 DSP Manifold ranking, Chi-square distance 

 

 

Fig. 5. Qualitative comparison of the proposed method with other state of the art methods on MSRA-B dataset. (a) input image, (b) IT [36], (c) GB 

[38], (d) SR [39], (e) AC [13], (f) IG [45], (g) MZ [38], (h) Ours, (i) ground truth.

 

Fig. 6. Qualitative comparison of the proposed method and other state of the art methods in some challenging cases. (a) Input image (b) Groundtruth 

(c) ours (d) MC [83], (e) CHC [84], (f) DSP [85], (g) HDCT [57], (h) BGFG [86], (i) DSR [52], (j) CNS [87], (k) FCB [88], (l) DCLC [89], (m) DRFI 

[76] (n) DGL [90].
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B. Quantitative Results 

The proposed method’s saliency map is compared with 

the state-of-the-art in Precision, Recall, F-measure and 

MAE. Table I gives the approach followed by the methods 

used for comparison. The quantitative results, compared 

with various state-of-the-art methods, are presented in 

Table II. The experimental results presented in this study 

offer a fair comparison, as they are derived from the 

implementation provided by the authors’ publicly released 

code with its default parameters. 

C. Computation and Complexity of the Proposed 

Method 

For many applications, salient object detection is a pre-

processing step, as it efficiently detects regions of interest 

and reduces the computational complexity of image 

analysis. For real-time applications, where computational 

limitations are a significant concern, the algorithm must 

rapidly and accurately identify the most salient regions. 

However, the computational complexity of many methods, 

including deep-learning-based approaches, can be a 

limiting factor that hinders their performance in real-time 

applications. This study utilizes computational analysis 

during runtime to illustrate experimentally the efficacy of 

the proposed method. The proposed method is run on 

MATLAB R2021b using an i7-10870H CPU @2.20GHz 

with 16 GB RAM. Fig. 7 depicts the computational time 

of the methods. 

TABLE II. COMPARING THE THRESHOLDED SALIENCY MAP’S PRECISION, RECALL, AND F-MEASURE RATE WITH CUTTING- EDGE ALGORITHMS 

ACROSS THREE BENCHMARK DATASETS: ECSSD, MSRA-B, AND DUT-OMRON, THE TOP RESULTS OF EACH METRIC ARE SHOWN IN BOLD 

Dataset Metric Ours MC CHC DSP HDCT BGFG DSR CNS FCB DCLC DRFI DGL 

ECSSD 

Precision ↑ 0.819 0.768 0.853 0.82 0.767 0.723 0.753 0.708 0.721 0.769 0.794 0.785 

Recall ↑ 0.862 0.652 0.635 0.77 0.640 0.606 0.647 0.600 0.515 0.636 0.698 0.655 

F-measure ↑ 0.834 0.738 0.790 0.80 0.733 0.692 0.726 0.680 0.660 0.734 0.769 0.750 

MAE ↓ 0.14 0.202 0.163 0.143 0.15 0.208 0.171 0.166 0.173 0.182 0.170 0.191 

MSRA-B 

Precision ↑ 0.913 0.84 0.94 0.88 0.81 0.854 0.86 0.819 0.93 0.91 0.86 0.906 

Recall ↑ 0.923 0.79 0.88 0.83 0.80 0.850 0.70 0.903 0.615 0.915 0.81 0.909 

F-measure ↑ 0.893 0.79 0.93 0.842 0.78 0.853 0.79 0.837 0.85 0.911 0.83 0.906 

MAE ↓ 0.096 0.098 0.067 0.08 0.099 0.112 0.762 0.058 0.140 0.063 0.15 0.063 

DUT-OMRON 

Precision ↑ 0.893 0.819 0.931 0.610 0.801 0.771 0.827 0.768 0.891 0.842 0.856 0.877 

Recall ↑ 0.849 0.774 0.760 0.761 0.791 0.696 0.776 0.751 0.804 0.791 0.827 0.812 

F-measure ↑ 0.816 0.809 0.885 0.630 0.814 0.726 0.812 0.763 0.887 0.834 0.847 0.861 

MAE ↓ 0.113 0.168 0.126 0.143 0.162 0.179 0.127 0.137 0.135 0.133 0.138 0.136 

 

 

Fig. 7. Average run time comparison. 

IX. CONCLUSION 

This work proposes a method for estimating salient 

objects in an image via classification, foreground 

connectivity and priors. As the proposed method uses the 

random forest algorithm for salient object detection, it can 

handle numerous features, including texture-based and 

edge-based features, even providing a reliable and 

efficient way to select the most relevant and discriminative 

features for salient object detection. Gabor filters can 

extract texture information from an image, which can be 

helpful in identifying salient objects that have distinctive 

texture patterns. On the other hand, combining edge filters 

to detect high-contrast boundaries in an image indicates 

salient object edges. These features are used as inputs to a 

classification algorithm to predict the saliency of each 

pixel in the image. The technique of foreground 

connectivity can be used to refine the saliency map and 

improve the accuracy of salient object detection by 

considering the spatial relationships between pixels in the 

foreground. By incorporating local and global contrast 

measures, the algorithm can identify regions in the images 

with high contrast, which are likely to be salient objects, 

as the salient objects tend to have distinct edges and 

texture patterns that result in high contrast compared to 

their surroundings, so it aids in improving the accuracy of 

the saliency map. Findings on three benchmark datasets 

demonstrate that our approach outperforms the current 

state-of-the- art regarding precision, recall, f-measure, and 

MAE. Although our method does not precisely replicate 

human vision, it still generates output more closely aligns 

with ground truth than other approaches. However, our 

method’s computational time is slightly longer than that of 

specific other methods; its quality still needs to be 

improved. In our future work, we plan to incorporate 

additional functionality into the saliency detection 

framework to improve accuracy in challenging 

background settings and reduce computational time by 

identifying optimal cues. 
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