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Abstract—Acute Lymphoblastic Leukemia (ALL) is a 

malignant neoplasm defined by the abnormal proliferation of 

immature lymphocytes in the hematopoietic system, 

specifically in the blood or bone marrow. The efficacy of ALL 

treatment is closely linked to its timely identification. 

Currently, the first diagnosis of ALL involves clinicians 

laboriously and fallibly examining stained blood smear 

microscopy images. Recently, deep learning techniques in 

biomedical diagnostics, focusing on human-centric 

approaches, have emerged as a potent tool to aid clinicians in 

their decision-making processes. As a result, researchers 

have devised a multitude of computer-aided diagnostic 

methods to detect ALL in blood images autonomously. 

However, most existing techniques for segmenting White 

Blood Cells (WBCs) do not consider the need for concurrent 

segmentation of the cytoplasm and nucleus. It is important to 

note that a significant drawback of the currently employed 

networks is their limited computational efficiency, which 

necessitates a substantial quantity of trainable parameters. 

The proposed deep learning model demonstrates favorable 

outcomes and can potentially be used to develop a dependable 

computer-aided detection system for leukemia malignancy. 

we suggest an Attention-Flipping Block (FAB) for the 

lightweight ALL-image segmentation model. It is evaluated 

using three publicly accessible datasets consisting of blood 

samples from individuals diagnosed with leukemia. These 

datasets are specifically referred to as C-NMC 2019, 

ALL_IDB1, and ALL_IDB2. With ALL-IDB2, the model’s 

segmentation accuracy is 93.56%, and its classification 

accuracy is 97.94 %, with an F1-Score of 97.65%.  
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I. INTRODUCTION 

Leukemia is a cancer of the hematopoietic system that 

causes White Blood Cells (WBCs) to replicate improperly 

in the bone marrow. Leukemia may be acute or  

chronic [1, 2]. Acute leukemia exhibits rapid onset and 

advances to an advanced stage, whereas chronic leukemia 

manifests a more protracted course of deterioration. Based 

on the classification method known as the French-

American-British (FAB) system, acute leukemia can be 

categorized into two main types: Acute Lymphoblastic 

Leukemia (ALL) and Acute Myeloid Leukemia (AML). 

Similarly, chronic leukemia can be classified into two 

distinct subgroups: chronic lymphocytic leukemia (CLL) 

and Chronic Myeloid Leukemia (CML). Acute 

Lymphoblastic Leukemia (ALL) is a blood cancer that 

spreads quickly and mostly affects lymphoid precursor 

cells in the bone marrow, bloodstream, and other parts of 

the body. Blood has three Essential Components: Platelets 

(PLT), Red Blood Cells (RBC), and White Blood Cells 

(WBC). Since bone marrow produces blood cells, ALL 

usually begins there [3−6]. A healthy white blood cell has 

a nucleus in the middle and a cytoplasm on the outside. 

Patients with acute lymphoblastic leukemia exhibit an 

absence of cytoplasm from the cell, with the nucleus 

entirely encasing it. Therefore, the WBC nucleus has a 

different shape and texture [7]. In addition, the cells 

diminish excessively in both size and number. WBC 

counts are considered important markers for diagnosing 

various infections in medicine. If treatment is not received 

or if it is not discovered in its early stages, ALL can 

potentially be deadly due to its rapid spread throughout the 

body. ALL is easily curable if identified in its early 

stages [8]. 

To detect acute lymphoblastic leukemia, hematologists 

require patients to have a full blood test since the disease 

alters WBC count and morphology. Manually counting 

white blood cells and assessing their morphology is a 

laborious, time-consuming, error-prone, and subjective 

process [9, 10]. Therefore, automated technologies based 

on artificial intelligence must supplement or replace 

manual processes. More accurate algorithms for 

diagnosing hematological abnormalities are being 

developed with the help of recent developments in 

artificial intelligence. AI image processing and automated 

detection are easy ways to cut down on human mistakes.   

Manuscript received December 30, 2023; revised March 1, 2024; 

accepted March 8, 2024; published July 19, 2024. 

Journal of Image and Graphics, Vol. 12, No. 3, 2024

23910.18178/joig.12.3.239-249doi: 

Ammar S. Al-Zubaidi 1, Mohammed Al-Mukhtar 1,*, and Ammar Awni Abbas Baghdadi 2

https://scholar.google.com/citations?view_op=view_org&hl=en&org=2055656215519197438
mailto:mohammed.abdul@cc.uobaghdad.edu.iq
mailto:ammar.a@comc.uobaghdad.edu.iq


 

The technique involves utilizing a pre-trained machine 

learning model on a fresh dataset with the expectation that 

the model’s ability to distinguish between different classes 

will remain beneficial. Most high-performing models 

undergo extensive training, so they require less time to 

adapt to a new dataset. These factors enable the 

optimization of the model on a specific dataset with a 

smaller amount of data, making large datasets unnecessary 

for achieving excellent performance [11]. 

Currently, Convolutional Neural Networks (CNNs) are 

highly efficient for diagnosing and categorizing normal 

and blast cells in medical imaging applications [12]. 

Utilizing CNNs requires substantial data and 

computational resources for training. In numerous 

scenarios, available datasets may prove inadequate for 

training a CNN. Transfer learning is a precise strategy that 

involves utilizing CNN models for a specific case while 

reducing the computational burden [13].  

In addition, segmentation plays a crucial role in both 

overall performance and disease diagnosis. The primary 

goal of this process is to isolate the targeted white blood 

cells by removing platelets and red blood cells and to 

separate any cells that overlap. The essential components 

of this system are three segmentation methods: signal and 

image processing techniques, machine learning techniques, 

and deep learning techniques. Typically, machine learning 

and deep learning-based techniques perform better than the 

former.   

According to published research, identifying acute 

lymphoblastic leukemia requires segmenting the WBC 

nucleus. Reducing the presence of other elements, such as 

RBCs, platelets, and the background, is necessary for high 

WBC detection accuracy. However, most existing 

techniques for the segmentation of White Blood Cells 

(WBCs) do not consider the need for concurrent 

segmentation of the cytoplasm and nucleus [14]. It is 

important to note that a significant drawback of the 

currently employed networks is their limited 

computational efficiency, which necessitates a substantial 

quantity of trainable parameters. To address these 

problems, our proposed model employs attention 

mechanisms in conjunction with an encoder-decoder 

network to enhance models’ capacity to focus their 

processing on certain regions of the input sequence or 

image. This, in turn, improves the efficiency of 

information processing. Attention blocks, such as 

transformers, have become an essential element of various 

deep learning systems. The flipped attention block 

structure relies on the memory unit to convert the input 

into a higher-dimensional space. As a result, the flipped 

attention block structure can provide a more 

comprehensive description of the overall feature 

information in the dataset. For training our network, we 

utilized openly accessible datasets, specifically the 

C_NMC_2019 and Acute Lymphoblastic Leukemia (All) 

databases. The C_NMC_2019 dataset comprises A total of 

15,114 images of Acute Lymphoblastic Leukemia (ALL) 

were gathered from 118 patients. Each image has a 

resolution of 450×450 pixels and a black background. The 

ALL-IDB dataset consists of two subsets. One subset has 

260 segmented lymphocytes, with 130 belonging to the 

leukemia class and the remaining 130 belonging to the 

non-leukemia class. The dataset is specifically designed 

for classification purposes. The second subset consists of 

around 108 unsegmented blood images that are 

categorized into leukemia and non-leukemia groups. A 

sample of datasets utilized in our work is shown in Fig. 1. 

 

Fig. 1. Samples of three datasets. The first row illustrates the ALL_IDB1 

dataset, the second row is ALL-IDB2, and the third row is C-NMC 2019-

Leukemia. 

The collection consists of 108 images gathered in 

September 2005. It comprises around 39,000 blood 

constituents, with the lymphocytes identified by 

experienced oncologists. The ALL-IDB2 dataset [15] 

consists of cropped images of normal and blast cells that 

are part of the ALL-IDB1 dataset. The collection consists 

of 260 photos, with 50% depicting lymphoblasts. images 

from ALL-IDB2 exhibit comparable gray-level 

characteristics to those of ALLIDB1, with the only 

difference being the size of the images. As the dataset is 

small amount, we used a data augmentation process and 

increased the lightning contrast to eliminate the darkness 

of each image. After this process Edge Detection (ED) has 

provided some advantages for feature extraction. 

Identifying key elements in images, including object 

borders or forms, is essential for tasks like object 

identification and image segmentation. The dimensionality 

of the data may be reduced with the aid of Edge Detection 

(ED), which in turn makes future processing activities 

more efficient. 

In comparison to other activation functions, the use of 

sigmoid activation functions for blood cell image 

segmentation carries with it several benefits as well as 

some downsides. If the output has to be registered as a 

binary classification, sigmoid functions help by squashing 

it between 0 and 1. On the other hand, Because of their 

smoothness and continuous differentiability across their 

whole range, sigmoid functions are ideal for optimization 

techniques that rely on gradients, such as gradient descent. 

The biggest disadvantage of sigmoid is that the vanishing 

gradient issue is very common in Deep Neural Networks 

(DNN) that have several layers, and it is particularly 

harmful to sigmoid functions. Alternative activation 

functions, such as Rectified Linear Unit (ReLU) and its 

variants, such as Leaky ReLU and Parametric ReLU, are 
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often used in deep learning for image segmentation. This 

is because these functions result in faster convergence, 

eliminate the problem of vanishing gradients, and improve 

the overall performance of deeper neural networks. 

II. LITERATURE REVIEW 

This study presents a new and simple ALL-image 

segmentation method based on color image 

modification [16]. A set threshold was used to partition the 

preprocessed pictures. Next, numerous metrics were used 

to evaluate the suggested method’s output. Finally, the 

suggested technique was compared with existing standards. 

The suggested method outperforms previous techniques in 

terms of accuracy, specificity, sensitivity, and time. 

Furthermore, the data suggests that the proposed method 

greatly increases performance metrics. 

In this study, WBC segmentation uses color space 

analysis and Otsu thresholding to separate WBC 

regions [17]. Nevertheless, noise in segmented images 

must be removed, and this is done using a morphological 

filter with connected Component Labeling (CCL). This 

watershed approach must be used to separate overlapping 

WBCs to retrieve the individual cells. The cells’ data is 

then gathered via feature extraction and sent into the 

classifier. A Support Vector Machine (SVM) classifier is 

employed in this system to categorize lymphoblasts.  

The image has been preprocessed by varying its 

brightness, contrast, and size to prepare it for segmentation. 

During the segmentation process, Otsu’s thresholding and 

mathematical operators separate the nucleus region into 

segments [18]. Mathematical morphological techniques 

simplify the nucleus region for feature extraction in the 

post-processing phase. Finally, the segmented regions are 

split into ALL-affected and normal cells using the 

recommended customized K-nearest neighbor 

classification algorithm. The trials in this study included 

more than 80 images from the ALL-IDB2 dataset, and the 

results showed accuracy rates of 96.25%, 95% sensitivity, 

and 97% specificity. 

The developed model for the detection and diagnosis of 

ALL is discussed in [19]. Shyalika et al. [19] suggested a 

segmentation model that uses supervised learning-based 

K-Nearest Neighbor (KNN) classification with 

morphological operations. The results demonstrate a high 

diagnosis accuracy of 88.8% for ALL using the 

recommended technique. The end product is a QT GUI 

development package written in Python that handles the 

majority of the planned backend functionality and a PHP-

based internet application that assists hematologists, 

physicians, and patients in carrying out useful activities.  

Shafique and Tehsin [20] suggested a segmentation 

strategy based on the basic threshold method. The model 

is trained by utilizing bone marrow images. The authors 

implemented convolutional neural networks and deep 

learning approaches to produce precise categorization 

outcomes. Consequently, experimental outcomes were 

generated and compared to those of SVM, K-Nearest 

Neighbor (KNN), and Naive Bayesian classifiers. The 

experimental results showed that the proposed method 

achieved 97.78% accuracy. 

Segmenting images into each pixel is suggested in [21]. 

A deep joint segmentation model may provide more 

segmentation power and far higher detection accuracy. In 

this method, a Taylor political Monarch Butterfly 

Optimization (PMBO-enabled Taylor) Deep Residual 

Neural Network (DRN) is designed for ALL classification. 

The important components—texture, statistical, and grid 

data—are extracted to enhance the categorization 

procedure. The Taylor PMBO trains a Deep Residual 

Neural Network (DRN) classifier for the ALL detection 

and classification process. This model fared better than 

earlier techniques (0.9656, 0.9666, 0.9709, 0.9280, and 

0.9321) when accuracy, sensitivity, specificity, F1−Score, 

and precision were evaluated.  

Jawahar and Gandomi proposed the ALNet model, 

which is based on a deep neural network and a depth-wise 

convolution method with varying dilation rates for 

classifying images of white blood cells [22]. They 

compared the model’s performance with other pre-trained 

models, namely VGG16, ResNet-50, Google Net, and 

Alex Net. The evaluation was based on different metrics, 

including precision, accuracy, loss accuracy, recall, F1− 

Score, and Receiver Operating Characteristic (ROC) 

curves. The experimental findings reveal that the ALNet 

model had the maximum accuracy in classification, 

reaching 91.13%. Additionally, it obtained an F1-Score of 

0.96 while exhibiting reduced computational complexity. 

Talaat et al. [23] proposed a model for segmenting WCs 

by applying histogram equalization and threshold 

estimation using the Zack method. The researchers derived 

a set of properties from the segmented cells, encompassing 

color, shape, texture, and hybrid characteristics. They 

employed the social spider optimization algorithm to 

determine the optimal features effectively. In addition, 

they employed a variety of classifiers to assess the efficacy 

of the presented methods using the ALL-IDB2 dataset. The 

suggested model demonstrated notable outcomes, 

achieving a classification accuracy of 95.23%. 

A novel Bayesian-based optimized CNN is introduced 

for the identification of ALL in microscopic images 

in [24]. To enhance the classification performance, the 

architecture of this study’s CNN is tailored to 

accommodate input data using the Bayesian optimization 

approach for hyperparameter tuning. The Bayesian 

optimization strategy utilizes an educated iterative 

approach to explore the hyperparameter space in pursuit of 

the optimal configuration of network hyperparameters that 

minimizes an objective error function. The CNN under 

consideration is trained and validated using a hybrid 

dataset. This hybrid dataset is created by merging two 

Publicly Available (ALL) datasets. The findings of this 

study reveal the superiority of the proposed Bayesian-

optimized CNN over other optimized deep learning ALL 

classification models. 

The Deep Convolutional Neural Network (DCNN) 

model is elaborately designed with several layers, diverse 

filter sizes, and a minimized number of filters and 

parameters to improve its efficacy and efficiency. The 

proposed model is called the Classification of Skin Lesions 

Network (CSLNet) which utilizes 68 convolutional 
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layers [25]. CSLNet was used to classify skin lesions using 

dermoscopic images. The experiment was conducted using 

ISIC-17, ISIC-18, and ISIC-19 datasets and benchmarked 

against the latest techniques. A specific Deep 

Convolutional Neural Network (DCNN) architecture is 

suggested for accurate detection of human gastrointestinal 

disorders using endoscopic images [26]. The DCNN 

architecture is designed with many routes, each examining 

the same endoscopic image at different resolutions. The 

proposed architecture is limited to two routes because of 

computational constraints, despite its potential to 

accommodate more routes and resolutions. 

Hybrid Transfer Learning Extreme Gradient Boosting 

(HTL-XGB) is presented in [27]. It leverages transfer 

learning and incorporates advanced CNNs to extract 

features effectively. The algorithm also utilizes the 

classification and detection capabilities of extreme 

gradient boosting for ALL identification. In addition, the 

article proposes an algorithm for detecting activated and 

non-activated cells in complete blood smear images. The 

proposed methodology utilizes image processing 

techniques in conjunction with the HTL-XGB architecture. 

A series of rigorous experiments on various cutting-edge 

Convolutional Neural Networks (CNNs) found that 

Xception achieved the highest level of accuracy, reaching 

89.7%. 

III. MATERIALS AND METHODS 

The spatial interactions of the input feature maps are the 

primary focus of the position attention mechanism. 

DenseNet architecture is based on an encoder-decoder 

structure as the basic architecture and dense convolutional 

connections. Through the use of the DenseNet structure, 

the parameters of the model may be reduced, which in turn 

speeds up the training process. At the same time as the 

convolution operation extracts the low-level 

characteristics of medical pictures, the feature information 

is communicated to the position attention and channel 

attention mechanism modules. 

The following are the main developments described in 

this manuscript: 

⚫ The present study uses the DenseNet 169 module as 

the principal network architecture to collect feature 

information from lymphoblastic leukemia images to 

improve the model’s effectiveness and reduce the 

number of parameters. The DenseNet 169 module 

can potentially improve medical image analysis 

efficiency, segmentation performance, and precision. 

⚫ In the process, the image’s fundamental visual 

features are extracted and passed on to the position 

attention and flipped attention mechanism modules. 

A more comprehensive feature map may be 

generated by joining the tensors produced by these 

modules. The network’s architecture is reminiscent 

of the classic Convolutional Neural Network (U-Net) 

network structure previously used for segmentation. 

The decoder module performs numerous actions, 

including up-sampling and image transposition, using the 

received image feature information. Applying the sigmoid 

function produces the desired segmentation result. Low-

level image features are extracted from all images using 

the convolution operation as part of transferring feature 

information to the position attention and flipped attention 

modules. Convolutional layers are initially used to extract 

the significant visual aspects of the input image. Following 

that, the aforementioned features are transformed or 

encoded into a spatial grid, where each grid position 

represents a unique area or location within the image. 

The location attention module can efficiently focus on 

important areas within an image for further processing or 

analysis using an attention matrix. It makes it easier for 

models to focus on essential visual inputs while ignoring 

unimportant or less critical areas. However, the suggested 

flipped attention module successfully captures and 

characterizes the feature information throughout the entire 

dataset using a dual memory unit technique consisting of 

two Conv1D procedures that share parameters. This can 

improve information sharing between samples and help 

identify the properties of the entire dataset. As seen in 

Fig. 2, we suggest an Attention-Flipping Block (FAB) for 

the lightweight ALL image segmentation model. 

 

 

Fig. 2. The proposed segmentation networks. 

The attention model is frequently used for a variety of 

jobs. The Squeeze-and-Excitation Networks (SEN) 

technique, as detailed in [28], has been proven to increase 

a network’s representational capacity by including 

attention mechanisms that simulate channel-wise 

interactions. According to the attention model’s issue 

statement, as the feature map grows, memory and 

computing overheads increase by a factor of four. The idea 

of crisscross attention was suggested by Hu et al. [29] to 

reduce computational and memory costs. For this method 

to capture the overall context successfully, row and 

column attention must be considered sequentially. 

Each layer in a DenseNet design is connected to every 

other layer in a feed-forward fashion. This connectivity 

arrangement makes it possible to reuse features and 

encourages gradients to spread throughout the network, 

which mitigates the problem of vanishing gradients. Fig. 3 

shows a dense unit is made up of many layers, each of 

which receives the feature maps from all of the unit’s 

antecedent layers as inputs.  

After dense blocks, transition layers, which include 

convolutional and pooling layers to reduce the spatial 

dimensionality of the feature maps, are frequently used. 

Observable characteristics of DenseNet [30] include 

parameter and processing efficiency. The network’s dense 
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connections make it easier to reuse features gathered at 

different depths, encouraging improved feature reuse. 

Additionally, by offering shorter pathways for gradient 

propagation, DenseNet’s dense connectedness helps to 

alleviate the vanishing gradient problem. 

 

 

Fig. 3.  Backbone of DenseNet. 

DenseNets resolve common degradation problems and 

training breaks by providing direct connections between 

all succeeding layers as shown in Eq. (1). 

 

                 0 1([ ,..., ])A A Ax H X X −=                     (1) 

The Ath layer receives as input the feature maps of all 

preceding layers, [X0, …, X A-1]: 

Concatenation of the feature maps created in layers is 

referred to as X0. Compared to other network topologies, 

densely connected layers show fewer output dimensions. 

This trait can successfully lessen the danger of 

overlearning features and, as a result, cut down on the 

computing time needed for training. The ALL-training 

data were scaled to meet the input layer’s required size of 

256×256×3. Fig. 3 describes the proposed network of 

segmentation and integrated flip attention block.  

A novel attention mechanism is provided in [31], 

referred to as External Attention (EA). This mechanism 

uses two memory units, which are two Conv1D algorithms 

that exchange parameters, to describe the feature 

information of the whole dataset. The purpose of this study 

is to provide a flipped attention block. The block diagram 

used memory unit was the same model of the inverted 

External Attention Block (IEA) [32], but we expanded the 

reshaped layers for two branches. Before the conv 

operation, all information is with a memory unit.  
For small and straightforward datasets, using just one 

occurrence of down- and up-sampling may be sufficient to 

get satisfactory segmentation results. Multiple up- and 

down-sampling strategies must be used to extract semantic 

feature maps for various regions from huge and complex 

datasets due to the difficulty in obtaining complete global 

information from a network on a small scale.  

Zhou et al. [33] proposed a change to the skip connections 

to overcome the problems. 

Let F0 be a matrix with the dimensions F0 CHW that 

represents the local picture features. Let F1 and F2 also be 

two new local features produced by convolution, where F1 

and F2 are both matrices with dimensions C, H, and W. The 

most recently created local features, F1 and F2, are molded 

into a format labeled CN, where N is equal to the product 

of the image’s height (H) and width (W) or the total 

number of pixel points. Before being fed into the SoftMax 

layer, the local features F1 and F2 are treated to a matrix 

multiplication process. The location attention features are 

produced by this process and can be illustrated in Eq. (2).   

1 2

1 2

.

.

1

e i j

i j

F F

ij n F F

i

P
e

=

=


                            (2) 

 

The influence of the location of pixel points i on 

position j is denoted by the variable 
ijP . While, 

1 jF  and  

2 jF  represent the two novel feature mappings generated 

by the convolution layer from the local features as shown 

in Eq. (3). When two-pixel spots’ features resemble one 

another, there is likely a strong relationship between them. 

After performing the convolution operation on the local 

feature F0, a feature map F3 is generated. This feature map 

belongs to the tensor space CHW. 

                    3 11
.

n

j ij i ji
E P F F= +                        (3) 

Subsequently, the feature map undergoes a conversion 

process to become the CN tensor. After obtaining the new 

tensor, both the position attention feature S and the new 

feature map D undergo a transposition operation, followed 

by matrix multiplication. Pixels representing the same 

object or having similar properties are assigned to a 

common category as part of classifying pixels with similar 

semantic attributes into a single class. The neural network 

can recognize and distinguish different items or areas 

inside a picture thanks to this categorization. 

The ultimate result is generated by executing a summing 

operation between the position attention map and the 

unique input image feature map F1. This allows for the 

completion of the process. A random number generator 

provides F1’s starting values. A contextual link exists 

between the location of the output feature information E 

and how it is displayed. During the functioning of the 

network, pixels that share semantic qualities may be 

grouped into a single class. On the other hand, pixels with 

separate semantic features can be assigned to different 

classes depending on how they relate to the context. 

It is generally accepted that an image’s pixels have 

varied degrees of value concerning the picture as a whole. 

Because of this, each pixel is given a unique weight value 

throughout the image segmentation process to outline the 

image precisely. The suggested method efficiently 

captures and characterizes the feature information over the 

whole dataset using a dual memory unit consisting of two 

Conv1D procedures that share parameters. 

The size of the data is changed to X  L (CHW) with the 

use of convolution 11 and reshaping techniques. In the 

structure the features text ruinous information, two 

flipping layers are added. In Memory Unit 1, the feature 

map FM is multiplied by four to get the result of attention 

 L (4CHW). A reshaping process then recovers the original 

feature map dimensions after Memory Unit 2 restores the 

dimensionality. The convolution process will distribute 

features on two layers to increase the transfer speed.  
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One benefit of the memory unit is its ability to transform 

the input into a space with higher dimensions. This results 

in a more comprehensive representation of the dataset’s 

feature information within the memory unit. Patterns, 

connections, and data changes of a more complex kind 

may be captured in the higher-dimensional space. Next, 

the distributed data gathered by the flipping layers and the 

resultant feature map can be acquired using a 1×1 

convolution and subsequently combined with the residual 

data. The output corresponds to the processed feature 

representation of the input. As a function of the input, the 

output is complicated, and the network’s goal during 

training is to learn this mapping. The input and learned 

mapping are combined to produce the output in a residual 

block.  

 

Fig. 4. The mechanism of the flipped attention block structure. 

If the memory unit can learn to encode important 

information more generically and abstractly, it will be able 

to identify constant patterns across all examples in the 

dataset. Hence, the generalizability of a model may be 

enhanced if its memory units are mapped to a higher-

dimensional space. Fig. 4 illustrates the mechanism of the 

flipped attention block structure with the memory unit. 

However, the final output Feature Map (FM) will be 

obtained through the last layer with a 1×1 convolution, and 

it will directly add to the residual information skip 

connection. However, the number of channels will not be 

fixed as much as we set the processed four-time expansion. 

The biggest advantage of ALL-FABNET is that uses a 

Memory Unit (MU) which is responsible for mapping all 

the input features to highly dimensional space. This will be 

able to describe all features.  

The purpose of this study is to provide a flipped 

attention block. The block stracture for memory unit  was 

the same model of the inverted External Attention Block 

(IEA), but we expanded the reshaped layers for two 

branches. Before the conv operation, all information is 

with a memory unit. Finally, for future techniqe we will 

excute weakly supervised learning methods [34] that was 

achieved more accurate results. 

IV. RESULT AND DISCUSSION 

We trained the model on three lymphoblastic leukemia 

datasets: ALL_IDB1, ALL-IDB2, and C-NMC 2019-

Leukemia. This section describes the performance 

evaluation of the proposed ALL-FABNET. The 

preprocessing step is the main factor in achieving good 

accuracy. For this reason, we enhanced the training set data 

to raise the sample size. We used procedures like rotating, 

cropping, color transformation, and flipping as part of our 

data augmentation process. Assigning varied weight 

information to the model’s input image based on location 

and channel is important for image segmentation since 

distinct pixels in different places have different 

responsibilities for the total image. The HarDNet model is 

the backbone. Although HarDNet is efficient, its 

architecture and unique harmonic kernels could make it 

difficult to comprehend and use. Compared to more 

straightforward designs, users may have to put in more 

effort to grasp the model’s complexities. The basic 

encoder-decoder of our model is DenseNet. Reusing 

features improves the efficiency of parameters and 

computations and helps with the issue of disappearing 

gradients. Feature reuse also has the potential to enhance 

the network’s information flow. 

To evaluate our trained models’ segmentation and 

classification results, we utilized evaluation metrics, 

including accuracy, precision, recall, and F1-Score. 

Listed below are the terms used to describe how metrics 

are calculated. 

True Positive (TP) denotes an accurately detected 

lesion. 

False Positive (FP) denotes an incorrect prediction of a 

lesion. 

True Negative (TN) denotes an accurately detected 

background. 

False Negative (FN) denotes a pixel incorrectly 

assigned as a background pixel. 

Accuracy illustrates the proportion of predictions that 

were accurate as shown in Eq. (4). 

             Accuracy=
𝑇𝑃

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                   (4) 

Recall quantifies the fraction of accurately detected 

anticipated as shown in Eq. (5). 

                           TP

TP FN
Recall =

+
                          (5) 

Precision is determined by dividing the number of 

actual positives by the number of predicted positives as 

shown in Eq. (6). 
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P
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TP F
=

+
                            (6) 

The Receiver Operating Characteristic (ROC) curve is 

a graph that shows how well a classification model works 

at all thresholds for classification. 

For evaluation, different baselines are implemented to 

analyze the significance of the proposed segmentation 

model. The findings of our model are collected from 

various in-depth experiments. First, the accuracy, 

precision, recall, and F-Score of the proposed ALL-

FABNET are compared to the other pre-trained baseline 

models, as shown in Table I. It reveals that our model 

performs exceptionally well on the ALL-IDB1, ALL-

IDB2, and C-NMC 2019 datasets [35]. 

 
TABLE I. EVALUATION OF THE PROPOSED SEGMENTATION MODEL WITH BASELINE MODELS 

Model Datasets Accuracy (%) Precision (%) Recall (%) F1−Score (%) 

ResNet18 C-NMC 2019 81.01 86.70 84.65 81.60 

DenseNet121 C-NMC 2019 94.53 93.15 92.75 95.95 

ResNet50 C-NMC 2019 93.50 92.73 93.10 94.94 

DenseNet121 ALL-IDB2 84.20 94.85 93.90 96.95 

VGG19 ALL-IDB2 86.92 85.45 88.75 83.16 

Proposed model ALL-IDB1,108 images 91.34 93.54 90.67 94.69 

Proposed model ALL-IDB2,260 images 93.56 90.63 89.54 93.64 

Proposed model C-NMC 2019 96.67 94.06 91.27 95.54 

 

It is observed that the proposed segmentation model 

outperforms other trained models in accuracy, precision, 

recall, and F1-Score when utilizing the C-NMC 2019 

dataset. The ALL-FABNET model achieves 96.67%, 

94.06%, 91.27%, and 95.54% in terms of accuracy, 

precision, recall, and F1−Score, respectively. The trade-off 

is that the proposed model has a greater number of 

parameters and model size than the baseline model. It is 

obvious from the results that the proposed model performs 

better than other trained models. In image segmentation, 

the Receiver Operating Characteristic (ROC) curve is a 

graphical representation of the performance of a binary 

classifier, as the threshold for classifying a pixel as 

foreground or background varies. The ROC curve plots the 

true Positive Rate (TPR) against the False Positive Rate 

(FPR) at different threshold settings. The area under the 

ROC Curve (AUC) measures the classifier’s overall 

performance and compares the performance of different 

classifiers. The ROC curve for the segmentation model is 

shown in Fig. 5 It shows the robustness of our 

segmentation in term of accuracy.  

 

Fig. 5. Accuracy of the ALL-FABNET segmentation model.    

In addition, our segmentation model gives a good result 

in terms of precision and recall as shown in Fig. 6.  

 

Fig. 6. Precision and recall of the segmentation model. 

The performance is measured by the rate of positive 

(absent) classifications that the model has correctly 

identified. It is how many of the positive items were 

predicted correctly out of the number of such items in the 

data, while the precision accuracy of such a model is under 

consideration. It is a number where the balance is between 

the correct positive predictions made by the model to the 

overall number of positive predictions. 

However, this section assesses the efficacy of the ALL-

FABNET classifier for ALL classification. This study 

utilizes multiple baseline model classifiers and evaluation 

matrices to evaluate and compare the performance of the 

proposed ALL-FABNET model and baseline classifiers in 

comparison with ResNet50, ResNet18, DensNet-121, and 

VGG16, as shown in Table II. 

TABLE II. EVALUATION OF THE PROPOSED CLASSIFICATION MODEL 

WITH BASELINE MODELS 

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

ResNet50 89.46 78.55 90.84 79.64 

DenseNet121 92.38 90.45 91.82 93.80 

DenseNet169 96.667 94.667 95.667 96.667 

 

Table II illustrates the best results in bold for our 

comparative training. Three different datasets were 
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utilized for the study to emphasize the best classification 

of lesions. 

The ROC curve in Fig. 7 shows the effectiveness of our 

model, in which the suggested classifier increased the 

classification accuracy to 97.94%. In addition, it 

significantly improved the detection rate as compared to 

the baseline classifiers in terms of precision (97.54%), as 

shown in Fig. 8 ALL-FABNET also achieved 98.65% in 

terms of recall and a maximum F1-Score of 97.65%. The 

positive discovery elucidates the efficacy of our 

segmentation approach, which gives us the robustness of 

our classification model. 
 

 

Fig. 7. ROC of the ALL-FABNET classification model. 

 

Fig. 8. Precision and recall of the classification model. 

Furthermore, during our comparison study, we 

evaluated ALL-FABNET’s approach regarding Unet and 

Unet++ by utilizing the ALL-IDB2 dataset. ALLFABNET 

achieved a segmentation performance of 93.56% and a 

classification performance of 97.94%. Classification 

accuracy reached a high level in the 50th epoch. Fig. 9 

illustrates the comparative accuracy of Unet, Unet++, and 

ALL-FABNET. Fig. 10 displays a comparative analysis of 

the losses across all models. 

 

 

Fig. 9. Accuracy comparison for three models. 

 

Fig. 10. Loss comparison for three models. 

We train the backbone model without Appling FAB 

block attention to compare with other training models’ 

results as registered in Table III. 

The table shows the results comparative between the 

three models without using the FAB block. We train the 

models with transfer learning techniques. 

The initial image input in the first row is shown in 

Fig. 11. To remove extraneous features, the second row 

illustrates the procedure for the edge detection approach. 

ALL-FABNET Segmenting is the third-row image for 

multi-cell blood microscopic studies. For the first row (a), 

Fig. 12 shows the original image input. To remove 

extraneous features, the second row displays the procedure 

for the edge detection approach. Class III ALL-FABNET 

segmentation for imaging of individual blood cells. 

TABLE III. EVALUATION OF THE PROPOSED SEGMENTATION MODEL WITHOUT USING FAB BLOCK MODELS 

Model Dataset Accuracy (%) Precision (%) Recall (%) F1−Score (%) 

ResNet50 C-NMC 2019 90.85 90.53 90.53 95.15 

DenseNet121 C-NMC 2019 90.34 89.60 88.49 94.65 

ResNet50 ALL-IDB2 89.46 78.55 91.84 79.64 

DenseNet121 ALL-IDB2 92.38 90.45 91.82 93.80 

ResNet 18 ISBI 91.78 85.83 87.68 92.64 

VGG16 ISBI 86.92 95.67 90.66 93.50 

Proposed model ALL-IDB1, 108 image 95.73 93.65 94.62 95.23 

Proposed model C-NMC 2019 97.50 95.32 96.76 97.03 

Proposed model ALL-IDB2 260 images 97.94 96.54 98.65 97.65 
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             (a)                                     (b)                                  (c) 

Fig. 11.  Comparative results of edge detection and ALL-FABNET for 

ALL_IDB1; (a) original input image, (b) Edge detection process, (c) 

ALL-FABNET segmentation for multi-cell blood microscopic images. 

 
                (a)                                 (b)                                (c) 

Fig. 12.  Comparative results of edge detection and ALL-FABNET for 

ALL_IDB2; (a) Original input image (b) Edge detection process, (c) 

ALL-FABNET segmentation for single-cell blood microscopic image. 

V. CONCLUCION AND FEATURE WORK 

Our model used the DenseNet 169 network as the 

backbone structure, and medical image feature 

information was extracted using four null space 

convolutional pooling pyramids. The model’s parameter 

count can be drastically reduced by using a structured 

method, which can also speed up the training process. The 

suggested model incorporates multiscale semantic 

information at each level, enabling the preservation of 

more detailed feature maps in the decoder block, unlike U-

Net. The modules in charge of position and floated 

attention mechanisms receive the feature information. A 

module called the dual-path flipped attention mechanism 

selectively amplifies important features while suppressing 

unimportant or distracting ones. However, the flipped 

attention block structure uses a memory unit to increase 

the efficiency of the network. The Dense Net 169 structure 

may significantly decrease the number of parameters in the 

model and enhance the speed of model training. A 

sequence of transpose convolution and up-sampling 

techniques are used to facilitate concatenating the two 

kinds of features. The method was evaluated and examined 

using many medical imaging datasets, including the 

ALL_IDB1, ALL-IDB2, and C-NMC 2019-Leukemia 

datasets. 

The strengths and weaknesses of ALLFAB are that 

memory units have improved representational capacity 

because they can map incoming data to a higher 

dimensional space, which allows them to store and 

understand data with more complex relationships and 

patterns. The rationale for this is that the ability to encode 

intricate traits and variations in the dataset is enhanced 

with more dimensions. Higher dimensional 

representations may be quite beneficial for accurately 

distinguishing the various groups or categories included in 

the dataset. This strategy is highly advantageous, 

especially in classification tasks when the goal is to 

distinguish between many groups based on the provided 

attributes. However, Transforming the input data into a 

higher-dimensional space allows for non-linear 

transformations. The importance of this rests in the fact 

that several real-world datasets show non-linear 

relationships between their attributes and that more 

dimensions allow for greater flexibility in capturing these 

non-linearities. The higher dimensional representation has 

the potential to enhance performance by prioritizing 

essential characteristics and disregarding irrelevant ones. 

By focusing on the most distinctive characteristics of the 

data, this approach for extracting features may simplify the 

learning process. 

The amount of memory and processing resources 

required to increase when mapping information to a higher 

dimensional domain. This leads to an increase in the 

duration of the model's training and inference, which will 

ultimately lead to a decrease in its efficiency. This is 

especially likely to occur in situations when time or 

resources are limited. The availability of data is 

diminishing, which poses a greater difficulty in effectively 

modeling and extracting insights from it. In high-

dimensional spaces, the data points tend to be more widely 

spread out, which requires a larger amount of training data 

to adequately cover the whole space. The likelihood of 

overfitting increases when the input is mapped to a higher-

dimensional space since the model is then better able to 

replicate the training data. When a model learns and uses 

irrelevant or unnecessary patterns or noise from its training 

data, a phenomenon known as overfitting occurs, and the 

model’s ability to predict new data is impaired. Moreover, 

the model in this phase gets more difficult to comprehend 

and make sense of higher dimensional representations than 

lower-level ones. Utilizing higher-dimensional spaces for 
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storing representations in large-scale applications with 

substantial datasets may need more memory and storage 

resources. For future research, Using Grad-CAM for lesion 

localization in weakly supervised learning training seems 

to be an effective approach. Grad-CAM is a method that 

highlights and shows the crucial regions in an image that 

impact the model's decision, particularly useful in medical 

imaging tasks like lesion detection. 

Secondly, Comparing the results using the YOLO 

algorithm is a great approach to evaluating the 

effectiveness of our model. YOLO is well-known for its 

real-time object detection capabilities and has been widely 

used in several applications, including medical imaging. 

We will assess our model's accuracy, speed, and suitability 

for lesion detection tasks by comparing it with YOLO. 
Future research will focus on creating novel algorithms 

to enhance the segmentation task, testing the proposed 

approach with increased computational resources, 

conducting experiments on higher resolution and larger 

datasets, and adapting the model for use in other imaging 

fields. 
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