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Abstract—The purpose of this research is to investigate the 

utilization of hybrid models in dermatological diagnostics 

and to demonstrate the potential of these models to advance 

medical picture classification capabilities. The study presents 

BiT-EfficientNet, a novel hybrid model developed specifically 

for the precise classification of monkeypox lesions in skin 

images. By combining EfficientNet B6 and Big Transfer (BiT-

M-R50x1), the model demonstrates exceptional performance 

in recognizing patterns and managing visual features. BiT-

EfficientNet demonstrates superior performance compared 

to existing models, achieving a precision of 98.25%, recall of 

95.48%, F1-Score of 96.84%, and accuracy of 96.86%. It is 

positioned as a strong contender through comparative 

analysis. A highly accurate model is achieved through careful 

parameter optimization, resulting in a training accuracy of 

99.14%. Assessing resilience through empirical means 

validates it. The findings have a significant impact on 

increasing diagnostic accuracy for illnesses like monkeypox, 

which can result in prompt interventions in professional 

medical professionals’ healthcare.   

 

Keywords—monkeypox disease, deep learning, ensemble 

learning, image processing, skin lesion detection 

 

I. INTRODUCTION 

The Monkeypox Virus (MPXV), which is an enveloped 

DNA virus with double strands and a member of the 

Orthopoxvirus Poxviridae family, is the infectious disease 

that causes monkeypox. There are two genetic clades that 

make up the family of viruses that cause monkeypox. The 

World Health Organization has concluded that the virus 

can occasionally be transmitted from animals to humans as 

well as from person to person. This is despite the fact that 

its natural reservoir is still unknown. An outbreak of 

monkeypox happened all across the world in the years 

2022–2023, following the elimination of smallpox in 1980 

and the invention of the disco [1]. The development of 
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cutaneous lesions, which typically appear within one to 

five days of infection with monkeypox, is common. The 

aforementioned rashes manifest initially on the face before 

spreading to multiple body parts, including the genitalia, 

eyes and oral mucosa. The resemblance to rashes observed 

in varicella cases frequently complicates the diagnostic 

process. As the rash progresses from fluid-filled lesions to 

crusty, scaly areas, it transforms into this appearance. The 

number and severity of these lesions may vary from person 

to person, as some may show a lot of papules that later join 

together to form large rashes [2, 3]. 

There are two main types of learning algorithms, based 

on a lot of study in machine learning: deep learning and 

ensemble learning. Deep learning methods can work on 

large scales, solve difficult problems, and automatically 

pull out features from unstructured data [4]. But building 

deep learning models takes a lot of work, and finding the 

best hyper-parameters takes a lot of trial and error, which 

is a boring and time-consuming process. Also, the chance 

of overfitting goes up as the deep neural network is trained 

to be more complicated [5]. The prevalence of 

Convolutional Neural Networks (CNNs) in academic 

research pertaining to image processing and classification 

is indicative of their extensive application. EfficientNet B6 

is a member of the EfficientNet family and embodies a 

convolutional neural network architecture that has been 

specifically designed to handle image classification tasks, 

and its architecture is robust. The model showcases 

remarkable efficiency and effectiveness by means of 

precise calibration of its depth, width, and resolution, 

thereby optimizing computational resources [6–8]. BiTM-

R50x1 is a highly advanced image classification model 

that has achieved the best possible results on various 

benchmarks, which makes it suitable for large-scale 

applications. It is very compatible with transfer learning 

and may be adjusted for specific applications such as 
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object detection, segmentation, and picture 

captioning [9, 10]. The main contributions of our research 

are the following: 

• Introduction of BiT-EfficientNet, a customized 

deep-learning-based ensemble model for early 

detection and accurate categorization of 

monkeypox. 

• Comprehensive comparison with pre-trained deep-

learning models, validating the efficacy of our 

proposed architecture, which outperformed each of 

them. 

• Demonstration of the applicability of our approach 

beyond monkeypox classification, showing 

potential in other medical sectors. 

In contrast, ensemble learning is a learning approach 

that merges multiple baseline models into a larger, more 

powerful model than the sum of its parts [11]. Because 

there are different starting models in ensemble learning, 

the risk of overfitting is also lower. Ensemble learning 

works better than single models and has been used 

successfully in many fields [12]. The EfficientNet 

architecture’s EfficientNetB6 variation is known for its 

model size and computing resource efficiency. Big transfer 

models like the BiT architecture are for transfer learning. 

Pre-trained models on several datasets and tasks are very 

adaptable and resilient. Ensemble learning reduces 

overfitting and maximizes model strengths by combining 

predictions. EfficientNetB6 and Big Transfer models in an 

ensemble learning framework are powerful image 

classification models. This ensemble technique tries to 

outperform individual models by using their efficiency, 

resilience, and diversity. Ensemble learning with 

EfficientNetB6 and BiT could improve image 

categorization by letting practitioners combine model 

strengths. 

In the midst of numerous skin diseases, this study 

presents an innovative hybrid model that has been 

specifically engineered to classify monkeypox lesions with 

enhanced accuracy. By seamlessly integrating the 

capabilities of EfficientNet B6 and Big Transfer (BiT-M-

R50x1). Domain generalization and intricate feature 

extraction are areas in which the model excels. Recognized 

for its effectiveness in scaling models, EfficientNet B6 

detects intricate patterns within skin lesions. 

Simultaneously, BiT-M-R50x1, renowned for its 

remarkable domain generalization, effectively manages 

discrepancies pertaining to signature dimensions, pen 

pressures, and writing styles. By means of rigorous 

refinement, the hybrid model attains enhanced levels of 

accuracy, recall, F1-Score, and precision. This study 

provides a cutting-edge model for the early detection of 

monkeypox lesions, which advances dermatological 

diagnostics. The findings may have significant 

ramifications, including the ability to implement timely 

healthcare interventions and enhance patient outcomes. 

This paper is organized in the following manner: In 

Section II, previous research in this area is discussed. The 

proposed methodology is presented in Section III. 

Section IV is dedicated to discussing the experimental 

results. The conclusion and possible directions for future 

research are covered in Section V. 

II. RELATED WORK 

There have been a number of studies that have been 

carried out to investigate the efficacy of various deep-

learning models for the detection of monkeypox. This is 

done with the intention of classifying monkeypoxes 

through the use of deep learning. Monkeypox can now be 

classified alongside other diseases as a result of this. An 

analysis of comparison and contrast was carried out on a 

total of thirteen distinct deep-learning models that had 

been pre-trained to identify the monkeypox virus [13]. A 

way to identify monkeypox was also suggested: it would 

be like a binary classification task, and a deep neural 

network that had already been trained would be used [14]. 

This method was applied to the identification of 

monkeypox. The identification of monkeypox was 

accomplished with the help of this method. Both of them 

looked into deep transfer learning strategies, with the latter 

team using a Convolutional Block Attention Module 

(CBAM) for image-based classification. Deep transfer 

learning was something that both of them investigated. The 

examination of skin lesions was supposed to be used in 

order to identify monkeypox illness [15]. Deep learning 

strategies were supposed to be utilized in order to 

accomplish this. Furthermore, we were able to show how 

important this factor is by looking at bad monkeypox skin 

imaging datasets [16]. This showed us how important 

dataset quality is when building models. This allowed us 

to better understand the significance of this factor.  

The identification of monkeypox through the utilization 

of CNN in conjunction with transfer learning demonstrates 

the effectiveness of utilizing pre-trained models to achieve 

better diagnostic results [17]. The range of models offered 

by EfficientNet extends from B0 to B7. Furthermore, the 

EfficientNetB0 model serves as the foundational model for 

the EfficientNet architecture [18]. EfficientNet-B0 will be 

compared against CNNs. EfficientNet-B0 outperforms 

MobileNet and InceptionV3 with 85.12% accuracy. With 

fewer parameters than ResNet-50, it offers good sensitivity 

(78.46%) and specificity (91.78%) [19]. 

The COVID-19 epidemic makes monkeypox diagnosis 

urgent and suggests using machine learning to diagnose it 

early and accurately. The study uses data augmentation 

and transfer learning to create a monkeypox diagnosis 

machine learning model utilizing image processing. The 

monkeypox classification model PoxNet22 has 100% 

precision, recall, and accuracy. These findings should help 

clinicians diagnose and classify monkeypox, according to 

the study [20]. Monkeypox’s milder symptoms and strong 

similarities to smallpox make diagnosis difficult. The 

EfficientNet Transfer Learning Method is applied. Photos, 

training, and testing are ready for analysis after 

normalization and feature extraction. The dataset is 

analyzed using Xception, ResNet152, EfficientNetV2L, 

InceptionV3, MobileNetV2, NASNet-Large, and 

DenseNet201. Evaluation metrics include accuracy, 

precision, recall, F1-Score, and training and validation 

loss [21]. Diagnoses utilize trained standalone deep 
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learning models like InceptionV3, EfficientNet, VGG16, 

and SENet Attention. Classifying monkeypox using 

SENet-based attention models and trunk branches of DL 

architectures. Experimental results show improved 

monkeypox diagnosis and classification in accuracy, 

precision, recall, and F1-Score [22]. 

A new framework was also proposed that uses Al-

Biruni Earth Radius optimization-based Stochastic Fractal 

Search (BERSFS) to improve the deep Convolutional 

Neural Network (CNN) layers in order to find monkeypox 

disease in photos [23]. Utilized the Al-Biruni Earth Radius 

Optimization Algorithm and transfer learning to enhance 

deep CNN models for the purpose of Monkeypox image 

classification [24]. From Table I, we can see that it 

presents a novel few-shot learning approach utilizing the 

deep-learning architecture to accurately categorize photos 

of monkeypox and other comparable skin diseases, even 

when only a limited number of samples are available [25]. 

These studies collectively showcase the capability of 

deep learning models, transfer learning, and attention 

mechanisms for precisely identifying and categorizing 

monkeypox from photos of skin lesions. Additionally, they 

emphasize the need for high-quality datasets and the 

creation of innovative frameworks to optimize the fine-

tuning of deep Convolutional Neural Network (CNN) 

layers, hence improving the categorization of monkeypox 

sickness.

TABLE I. SUMMARY OF LITERATURE REVIEW 

Reference Year Image Model Accuracy Limitation 

[26] 2022 
monkeypox (102), 

others (126) 

VGG-16, ResNet50, Inception-

V3, ensemble 
82.96% 

The dataset is limited and demographically 

homogeneous, which may limit the use of deep 

learning models for monkeypox lesion 

identification. 

[27] 2022  

AlexNet, GoogLeNet, VGG- 

16, SVM, k-NN, Naive Bayes, 

DT, RF 

91.11% 

The Monkeypox-Skin-Lesion-Dataset has few 

original and augmented pictures. So, making deep 

CNN model and machine learning classifier 

comparisons challenging. 

[14] 2022 
monkeypox (102), 

others (126) 
Modified MobilNetV2 91.1% 

The research does not explore pre-trained network 

biases or restrictions for monkeypox 

classification. 

[28] 2022 

monkeypox, 

chickenpox, smallpox, 

cowpox, measles, 

normal 

ResNet50, DenseNet121, 

Inception-V3, SqueezeNet, 

MobileNet-V2, ShuffleNet-V2, 

ensemble 

83.00% 

The study utilized a dataset obtained through web 

scraping, which may not comprehensively capture 

the variety of Monkeypox skin images. 

[29] 2022 
monkeypox, 

tuberculosis 

VGG-16, ResNet50, Inception-

V3, ensemble 
88.64% 

The research does not examine the drawbacks of 

idea finding approaches for infectious disease 

classification. 

[30] 2022 
monkeypox, others 

(total 2142) 
5 deep learning algorithms 88.64% 

Replicating the trials is difficult because the paper 

does not specify the hyperparameters for each 

deep learning model. 

[31] 2022 

monkeypox, 

chickenpox, measles, 

normal 

13 deep learning models. 88.64% 

The paper does not discuss the potential 

challenges or disadvantages of using pre-trained 

deep learning models. 

III. MATERIALS AND METHODS 

This section will include a concise summary of the 

materials and procedures employed in this study (Fig. 1), 

represents a graphical illustration of the complete 

overview, showing the sequential phases in data collection, 

preprocessing, model training, and the classification of 

monkeypox. 

A. Data Gathering and Preprocessing 

This study dataset, comprising 228 high-quality photos 

of monkeypox and others, was obtained from Kaggle [32]. 

The dataset is available online 

(https://www.kaggle.com/datasets/nafin59/monkeypox-

skin-lesion-dataset). There are 3 folders in the dataset. The 

dataset is divided into two classes, each representing a 

different type of data at 224×224 pixels. The dataset 

contains a small number of original images. The total 

number of original images is 228, with monkeypox 

accounting for 102 and others accounting for 126. As a 

result, using augmented images is extremely beneficial. 

The use of augmented images can be extremely beneficial. 

An overview of the dataset is presented in Table II. There 

are 3,192 augmented images total in the dataset; 1,428 of 

those images are of monkeypox, and the remaining 1,764 

are of other types. 

We split the data into training, test and validation sets 

using an 80:10:10 ratio. The training set is augmented with 

data augmentation techniques such as rescale, rotation, 

shift, shear, zoom, and flipping using the Image-

DataGenerator class. The flow_from_dataframe function 

creates data batches. The function scales the input pictures 

to 224×224 pixels and sets the batch size to 32. The class 

mode is categorical, and we shuffle the training set. The 

train data and test data are then passed to the train 

generator and test generator, respectively, as shown in 

Fig. 2. 
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TABLE II. DATASET OVERVIEW 

Class Original Images Augmented Images 

Monkeypox 102 1428 

Others 126 1764 

Total 228 3192 

 

 

Fig. 1. Comprehensive diagram illustrating the entire sequence of our 

proposed study. 

 

Fig. 2. Exemplary image used for training purposes. 

B. Model Development 

1) EfficientNet B6 

A convolutional neural network design is featured 

within the broader EfficientNet model series [18, 33]. This 

architectural framework is a member of the EfficientNet 

family of models and is also renowned for its efficacy in 

deep learning applications. The neural network employs a 

compound scaling approach to systematically adjust the 

network’s width, depth, and resolution in a methodical 

manner. EfficientNet B6, characterized by 43.3 million 

parameters and 360 layers, exemplifies the application of 

this scaling method [34]. EfficientNet B6 attains cutting-

edge precision across diverse image classification tasks, 

encompassing benchmarks like ImageNet, CIFAR-100, 

and Flowers. Notably, it accomplishes this feat with 

significantly fewer parameters compared to alternative 

models of similar complexity [35]. Furthermore, 

EfficientNet B6 is compatible with popular deep learning 

frameworks such as TensorFlow and Keras. EfficientNet 

B6 processes an input image and categorizes it into one of 

multiple predefined classes. Notably, the model 

demonstrates a rapid training pace, facilitating efficient 

learning, and can be easily fine-tuned to accommodate 

custom datasets [36]. EfficientNet B6 presents a 

commendable blend of efficiency and performance, 

rendering it well-suited for a diverse array of image 

classification tasks. The model’s architecture and scaling 

strategy have been meticulously crafted to enhance 

performance by maintaining a harmonious equilibrium 

among network depth, width, and resolution. Employing 

the compound scaling method, which uniformly adjusts all 

dimensions of depth, width, and resolution, contributes to 

heightened model accuracy and efficiency. Extensive 

evaluations of the model’s performance across diverse 

datasets affirm its robust transferability and its ability to 

achieve state-of-the-art accuracy in various image 

classification endeavors. It’s worth mentioning that 

EfficientNet B6 supports transfer learning, which lets you 

fine-tune it on custom datasets. This makes it useful for a 

wide range of computer vision applications. 

2) BigTransfer 

BigTransfer (BiT) stands out as an advanced transfer 

learning technique in the realm of computer vision [9]. A 

notable member of the BiT model family, the BiTM-

R50x1 model, is seamlessly integrable with popular deep 

learning frameworks like TensorFlow and Keras [37]. 

Serving as a robust pre-trained model, it accepts an image 

as input and proficiently categorizes it among multiple 

predefined classes. The BiT-M-R50x1 model gets better 

accuracy and efficiency by using a compound scaling 

method to make the network width, depth, and resolution 

all the same. Boasting 23.5 million parameters, this model 

demonstrates exceptional performance across diverse 

image classification tasks, rendering it suitable for a broad 

spectrum of computer vision applications. Its ability to 

perform fine-tuning on unique datasets, striking a careful 

balance between efficiency and performance, further 

emphasizes its adaptability. The intricately designed 

architecture and scaling method of the model contribute to 

its superior performance by harmonizing network depth, 

width, and resolution. Particularly advantageous for 

applications like image classification, object detection, and 

image recognition, the BiT-M-R50x1 model emerges as a 

valuable asset in the landscape of computer vision [38]. 

3) Supervised ensemble model 

Big Transfer is a creation of Google AI, a large-scale 

vision model trained on extensive datasets of images and 

text. This broad training equips it with the capability to 

discern and learn new features, whereas a seasoned AI 

expert well-versed in the intricacies of the visual domain. 

In contrast, EfficientNet B6 is renowned for its 

convolutional neural network design, adept at achieving a 

delicate balance between accuracy and efficiency. Notably, 

it delivers state-of-the-art performance while demanding 
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lower computational resources compared to its 

counterparts, thereby embodying a streamlined and highly 

efficient machine. The ensemble model’s effectiveness 

stems from leveraging the strengths of both Big Transfer 

and EfficientNet B6, combining their complementary 

features to enhance performance across various tasks. This 

synergy allows the ensemble model to capitalize on the 

robustness and versatility of Big Transfer alongside the 

efficiency and precision of EfficientNet B6, resulting in 

improved overall performance and effectiveness.  

Ensemble learning is a technique that combines multiple 

distinct models in order to improve generalization 

performance. At present, deep learning architectures are 

demonstrating greater efficacy in comparison to pre-

trained models. Fig. 3 illustrates an ensemble model 

architecture designed to process input images with 

dimensions of 224×224×3 (224 pixels in width, 224 pixels 

in height, and 3 color channels). The image undergoes 

initial processing using a Bit+EfficientNetB6 block as 

illustrated in (Fig. 4), which consists of a convolutional 

neural network pre-trained on a vast collection of photos. 

This module extracts several characteristics from the 

image. Subsequently, the characteristics are transmitted 

through a functional layer, which is a custom layer that 

executes a particular action on the data. The Keras deep 

learning packaging provides a standard sort of layer known 

as a Keras layer, which is used to process the output of the 

functional layer. In this instance, the Keras layer employed 

is a concatenate layer, which merges the characteristics 

extracted from the two preceding layers. Subsequently, the 

collective attributes are transformed into a unidimensional 

array through the process of flattening. Then, the 

compressed characteristics are transmitted through a 

compact layer, which is a fully connected layer that 

generates a prediction regarding the class of the image. 

Let fEffNet(Xtr) represent the predictions made by the 

EfficientNet B6 model on the training set Xtr, and fBiT(Xtr) 

represent the predictions made by the BigTransfer model 

on the same training set. 

 

 

Fig. 3. Architectural diagram of proposed method. 

 

Fig. 4. BiT-EfficientNet model architecture. 

Similarly, let fEffNet(Xval) and fBiT(Xval) represent the 

predictions made by the EfficientNet B6 and BigTransfer 

models on the validation set Xval respectively.  

Then, the combined features can be represented as: 

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝑡𝑟 = {𝑓𝐸𝑓𝑓𝑁𝑒𝑡(𝑋𝑡𝑟) 𝑓𝐵𝑖𝑇(𝑋𝑡𝑟)} (1) 

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝑣𝑎𝑙 = {𝑓𝐸𝑓𝑓𝑁𝑒𝑡(𝑋𝑣𝑎𝑙) 𝑓𝐵𝑖𝑇(𝑋𝑣𝑎𝑙)} (2) 

Model = Train(Combined tr, ytr, Combined val, yval) 

where ytr and yval are the true labels for the training and 

validation sets respectively.  

Algorithm 1 describes the process of training an 

ensemble model using features extracted from 

EfficientNet and BiT models. Initially, the features are 

extracted from the training and validation datasets using 

the EXTRACT procedure, followed by concatenation to 

create combined features. These combined features are hen 

classified using the CLASSIFY procedure, and the 

esulting outputs are utilized for model training through the 

TRAIN procedure. The model is initialized with specified 

loss function and optimizer, compiled, and trained on the 

training data with validation data for a set number of 
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epochs. Finally, the trained model is returned for 

evaluation. Overall, Algorithm 1 presents a succinct 

framework for ensemble model training leveraging pre-

trained EfficientNet and BiT features. 

 

Algorithm 1: Ensemble Model Training 

1: procedure ENSEMBLE_TRAIN(𝑿𝒕𝒓, 𝑿𝒗𝒂𝒍, 𝒀𝒕𝒓, 𝒀𝒗𝒂𝒍) 

2: FeffNet_tr, FbiT_tr ← 𝑬𝒙𝒕𝒓𝒂𝒄𝒕(𝑿𝒕𝒓) 

3: FeffNet_val, FbiT_val ← 𝑬𝒙𝒕𝒓𝒂𝒄𝒕(𝑿𝒗𝒂𝒍𝒓)  

4: Combined_tr ← 𝑪𝒐𝒏𝒄𝒂𝒕𝒆𝒏𝒂𝒕𝒆( 𝑭𝒆𝒇𝒇𝑵𝒆𝒕_𝒕𝒓, 𝑭𝒃𝒊𝑻_𝒕𝒓) 

5: Combined_val ←
𝑪𝒐𝒏𝒄𝒂𝒕𝒆𝒏𝒂𝒕𝒆( 𝑭𝒆𝒇𝒇𝑵𝒆𝒕_𝒗𝒂𝒍, 𝑭𝒃𝒊𝑻_𝒗𝒂𝒍) 

6: Output_tr ← 𝑪𝒍𝒂𝒔𝒔𝒊𝒇𝒚(𝑪𝒐𝒎𝒃𝒊𝒏𝒆𝒅𝒕𝒓) 

7: Output_val ← 𝑪𝒍𝒂𝒔𝒔𝒊𝒇𝒚(𝑪𝒐𝒎𝒃𝒊𝒏𝒆𝒅𝒗𝒂𝒍)    

8: Model ←  𝑻𝒓𝒂𝒊𝒏(𝑪𝒐𝒎𝒃𝒊𝒏𝒆𝒅𝒕𝒓,𝒚𝒕𝒓, 𝑪𝒐𝒎𝒃𝒊𝒏𝒆𝒅𝒗𝒂𝒍, 𝒚𝒗𝒂𝒍 

9: return Model 

10: end procedure 

11: procedure EXTRACT(X) 

12: FeffNet ← 𝑬𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒕𝑵𝒆𝒕𝑭𝒆𝒂𝒕𝒖𝒓𝒆(𝑿) 

13: FbiT ← 𝑬𝒃𝒊𝑻𝑭𝒆𝒂𝒕𝒖𝒓𝒆(𝑿) 

14: return FeffNet, FbiT 

15: end procedure 

16: procedure CLASSIFY(Features) 

17: Flattended_Features ← 𝑭𝒍𝒂𝒕𝒕𝒆𝒏𝒆𝒅𝑭𝒆𝒂𝒕𝒖𝒓𝒆𝒔 

18: Dense_Output ← 𝑫𝒆𝒏𝒔𝒆(𝑭𝒍𝒂𝒕𝒕𝒆𝒏𝒆𝒅𝑭𝒆𝒂𝒕𝒖𝒓𝒆𝒔) 

19: Output ← 𝑺𝒐𝒇𝒕𝒎𝒂𝒙(𝑫𝒆𝒏𝒔𝒆𝑶𝒖𝒕𝒑𝒖𝒕) 

20: return Output 

21: end procedure 

22: procedure TRAIN(𝑿𝒕𝒓, 𝑿𝒗𝒂𝒍, 𝒀𝒕𝒓, 𝒀𝒗𝒂𝒍) 

23: Model ← 𝑰𝒏𝒊𝒕𝒊𝒂𝒍𝒊𝒛𝒆𝑴𝒐𝒅𝒆𝒍() 

24: Loss ← 𝑪𝒂𝒕𝒆𝒈𝒐𝒓𝒊𝒄𝒂𝒍𝒄𝒓𝒐𝒔𝒔𝑬𝒏𝒕𝒓𝒐𝒑𝒚()
 

25: Optimizer ← 𝑨𝒅𝒂𝒎𝑶𝒑𝒕𝒊𝒎𝒊𝒛𝒆𝒓() 

26: Model Compile(loss = Loss, optimizer = Optimizer, 

metrics = [‘accuracy’])  

27: Model Fit(𝑿𝒕𝒓,  𝒀𝒗𝒂𝒍, validation_data (𝑿𝒗𝒂𝒍, 𝒀𝒗𝒂𝒍), 

epochs = N) 

28: return Model 

29: end procedure 

C. Optimizing Parameter 

The selected parameters for the ensemble model’s 

compilation are designed to efficiently optimize the 

model’s weights using the Adam optimizer, reduce the 

difference between predicted and actual class distributions 

with categorical cross-entropy loss, and analyze the 

model’s performance mainly through classification 

accuracy. The parameters are ideal for training and 

assessing classification models, particularly in situations 

where accuracy is the main performance measure. We 

optimized our model by fine-tuning parameters such as 

input shape, batch size, number of epochs, validation split, 

optimizer, and activation function, resulting in enhanced 

model performance and improved overall accuracy 

Table III. 

D. Evaluation Metrics 

In the evaluation of the model on the test set, notable 

performance metrics were observed. The precision (1), 

indicating the model’s ability to correctly identify positive 

instances, reached 98.25%, calculated as the ratio of true 

positives to the sum of false positives and true positives. 

Similarly, the Recall Eq. (2), representing the model’s 

capability to capture all actual positive instances, achieved 

a rate of 95.48%. The F1-Score Eq. (3), a balanced 

measure considering both precision and recall, also 

marked an impressive 96.84%. Finally, the train accuracy 

Eq. (4), reflecting the overall correctness of the model, 

reached 99.14%. These metrics collectively demonstrate 

the robustness and effectiveness of the model in making 

accurate predictions on the given test set.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                            (3) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (4) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2× 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
  (5) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁 

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
  (6) 

TABLE III. HYPER-PARAMETERS OF ENSEMBLE MODEL 

Parameter Value 

Image Size 224×224 

Batch Size 32 

Epochs 100 

Validation Split 0.1 

Class Number 2 

Rescaling 1/255 

Pooling Avg 

Activation Function ReLU and Softmax 

Optimizer Adam 

Loss Function Categorical Crossentropy 

Dataset Size 228 

Total Parameters 69,889,721 

IV. RESULT AND DISCUSSION 

A. Monkeypox Categorization Result 

By completing 100 epochs of training, our model 

achieved a training accuracy of 99.14%. The model 

exhibits strong performance on the validation set, with a 

validation accuracy of 96.86% (Fig. 5). The loss gradually 

decreased over the epochs, suggesting that the model was 

learning from the data. The training loss after 100 epochs 

is 0.0232, and the validation loss is 0.1466 (Fig. 6). The 

curves demonstrate a consistent improvement in accuracy 

throughout the training process for both sets of data. 

However, towards the end of the epoch, the validation 

accuracy is gradually decreasing. The loss curves for 

training and validation data illustrate a decrease in loss 

throughout the training process. The model accurately 

classifies 141 cases as monkeypox, which represents true 

positive results, and correctly identifies 169 cases as not 

being monkeypox, which represents true negative results. 

It indicates that the false negative number is 2, indicating 

the cases where the model inaccurately classified a non-

monkeypox case as monkeypox. The false positive rate is 

8, representing the instances where the model incorrectly 

classified cases as monkeypox when they were actually 

attributed to a different condition (Fig. 7). 
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Fig. 5. Training and validation accuracy curve. 

 

Fig. 6. Training and validation loss curve. 

 

Fig. 7. Confusion matrix of Bit-EfficientNet architecture. 

B. Result Model Performance Comparison 

In this subsection, we assess and contrast the 

performance metrics of various classification models. A 

comprehensive summary of precision, recall, F1-Score, 

and accuracy for widely used models, including VGG16, 

VGG19, Inception v3, Ensemble, AlexNet, GoogleLeNet, 

MobileNet-V2, ShuffleNet-V2, and RESNET50. The 

proposed Bit-EfficientNet model is provided in Table IV. 

Significantly superior to its competitors, this model 

achieves a precision, recall, and F1-Score of 98.25%, 

95.48%, 96.84% respectively demonstrating its robustness 

in accurate classification. Fig. 7, visually depicts the 

classification outcomes in the confusion matrix. This 

further underscores the efficacy of the model in increasing 

the occurrence of both true positives and true negatives. 

With a remarkable accuracy rate of 100%, Bit-EfficientNet 

establishes itself as a highly prospective contender for 

tasks involving the classification of monkeypox. The 

present analysis illustrates the importance of model 

selection in the context of image classification, specifically 

in attaining high-performance results. The model’s 

exceptional precision, recall, and F1-Score demonstrate its 

proficiency in accurately detecting instances of 

monkeypox and differentiating them from other ailments. 

The precision score of 98.25% signifies that the model 

accurately predicts cases of monkeypox 98.25% of the 

time. This indicates that the model has acquired highly 

efficient capabilities for recognizing the distinct attributes 

of monkeypox cases. The recall score of 95.48% indicates 

that the model can correctly detect 95.48% of all real 

monkeypox cases. This suggests that the model has 

successfully acquired knowledge from a large volume of 

data and is capable of applying that knowledge to new, 

unfamiliar data. The F1-Score, calculated as the harmonic 

mean of precision and recall, is 96.84%. It quantifies the 

model’s accuracy by considering both precision and recall 

in a balanced manner. A high F1-Score indicates that the 

model effectively balances recall and precision, 

demonstrating its optimal tuning for both aspects without 

sacrificing one for the other. After analyzing the 

performance metrics, it appears that combining the 

generalization capabilities of BiT with the efficiency and 

scalability of EfficientNetB6 gives a model that is both 

accurate and efficient. Findings like these suggest that the 

model is good at both correctly identifying cases of 

monkeypox and lowering the number of wrong 

classifications for those conditions and those in Table IV.

TABLE IV. EVALUATION OF OTHER MODELS’ PERFORMANCE  

Study Classes Best Perform Model 
Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Accuracy 

(%) 

[39] Monkeypox Chickenpox Measles Xception CBAM Dense 90.70 89.10 90.11 83.89 

[40] Chickenpox Measles Monkeypox Normal MobileNetV2 90.50 90.50 88.25 91.37 

[41] Monkeypox Others EfficientNet- B4 89.60 88.90 89.20 88.89 

[42] Monkeypox Normal GoogLeNet 86.34 86.48 86.87 86.27 

[43] Chickenpox Measles Monkeypox Normal EfficientNet-B0 96.57 96.53 95.52 96.53 

[14] Monkeypox Custom CNN 90.00 90.00 90.00 91.11 

This work Monkeypox Others BiT-EfficientNet 98.25% 95.48% 96.84% 96.86% 
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V. CONCLUSION 

The utilization of the BiT-EfficientNet model in 

medical image classification exemplifies the 

transformative capacity of hybrid deep learning 

approaches and signifies a substantial progression in 

dermatological diagnostics. The diagnostic tool’s efficacy 

in identifying monkeypox lesions underscores its 

significance as a means to accelerate treatment and 

improve patient outcomes. Moving forward, it is crucial to 

contemplate the more comprehensive ramifications of 

incorporating this model into clinical practice, enhancing 

its functionalities, and cultivating cooperation to facilitate 

the exchange of data. By effectively tackling these 

obstacles, we can not only substantiate the effectiveness of 

the model but also establish a foundation for its wider 

implementation in the field of dermatology and other 

disciplines, thereby capitalizing on the capabilities of 

artificial intelligence to transform the provision of 

healthcare. Subsequent areas of investigation ought to 

center on practical implementation and verification, 

longitudinal assessment of performance progression, 

investigation into the integration of electronic health 

records, refinement of models, expansion of applications 

to encompass additional dermatological conditions, 

improvement of interpretability, and facilitation of 

worldwide data exchange. Through the implementation of 

these strategies, it is possible to validate the efficacy of the 

model, enhance patient outcomes, and advance the domain 

of dermatological diagnostics. 
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