
Intelligent Beta-Based Polynomial

Approximation of Activation Functions for a

Robust Data Encryption System

Hanen Issaoui 1,*, Asma ElAdel 2, and Mourad Zaied 3

1 Research Team in Intelligent Machines (RTIM) Unit, University of Gabes, Gabes, Tunisia
2 Higher Institute of Computer and Multimedia of Gabes, University of Gabes, Gabes, Tunisia

3 National School of Engineers of Gabes, University of Gabes, Gabes, Tunisia

Email:hanen_issaoui78@yahoo.fr (H.I.); asma.eladel@ieee.org (A.E.); mourad.zaied@ieee.org (M.Z.)

*Corresponding author

Abstract—Deep neural network-based machine learning

algorithms are widely used within different sectors and

produce excellent results. However, their use requires access

to private, often confidential, and sensitive information

(financial, medical, etc). This requires precise measures and

particular attention to data security and confidentiality. In

this paper, we propose a new solution to this problem by

integrating a proposed Convolutional Neural Network

(CNN) model on encrypted data within the constraints of

homomorphic encryption techniques. Specifically, we focus

on the approximate activation functions ReLU, Sigmoid, and

Tanh, which appear to be the key functions of CNNs. We

start by developing new low-degree polynomials, which are

essential for successful Homomorphic Encryption (HE). The

activation functions will be replaced by these polynomials,

which are based on the Beta function and its primitive. To

make certain that the data is contained within a given range,

the next step is to build a new CNN model using batch

normalization. Finally, our methodology and the

effectiveness of the proposed strategy are evaluated using

Mnist and Cifar10. The experimental results support the

proposed approach’s efficiency.

Keywords—Convolutional Neural Network (CNN),

homomorphic encryption, activation function, beta function,

batch normalization

I. INTRODUCTION

As prospective developments in the field of artificial

intelligence, machine learning techniques based on neural

network architectures have attracted attention [1]. Neural

networks seek to solve the problem of classification by

correctly classifying new observations based on training

data sets for which the classification is known [1−4]. Since

these techniques require access to private data, several

research studies have been carried out in recent years on

how different machine learning algorithms, such as neural

network learning algorithms, preserve data confidentiality

[5, 6]. Modifying the activation function, encrypting

incoming data, and running the homomorphic encryption

Manuscript received December 23, 2023; revised March 1, 2024;

accepted March 13, 2024; published August 6, 2024.

model are all examples of network security methods [7].

The host does not have access to the keys required to

decrypt the data, hence the encryption mechanism ensures

its confidentiality [8]. These initiatives propose to encrypt

both the model and the input data. Among these techniques,

a technology known as CryptoDL [1] enables deep neural

network algorithms to function on encrypted data and

allows services to be given without divulging the study’s

data [1, 8]. Convolutional Neural Networks (CNN) and

Homomorphic Encryption (HE) are the two primary parts

of CryptoDL. The principle of homomorphic encryption

was first introduced by Rivest et al. [8] in 1978. The HE

method, on the other hand, employs encryption and

operates on CNNs with encrypted data [9].

The complexity of the neural network, including the

number of layers of each type and the complexity of the

activation function, has considerable impact on the

effectiveness of this method [10]. The benefit of

homomorphic encryption is that it makes it possible to do

computations on encrypted data without having access to

the original data or the secret calculation key. Additionally,

it is limited to adds and multiplications only. Additive and

multiplicative homomorphic encryption methods, such as

the Paillier cryptosystem [2] and the RSA or El Gamal

encryption schemes [11], have been developed for many

years. Later, other researchers created several additional

HE methods [12]. The bulk of these encryption techniques

do, however, have certain drawbacks. Some of them

permit only one operation, as Paillier’s encryption

method [2]. Among the non-polynomial activation

functions that cannot be assessed homomorphically are the

ReLU, Sigmoid, and Tanh activation functions. But it’s

important to know whether a function can be roughly

represented by a low-degree polynomial. In the solution by

Xie et al. [13], low-degree polynomials were utilized to

approximate these functions. Replace the convolutional

neural network layer’s neurons with a polynomial

activation function. When selecting the activation function,

it is important to take into account both the direct data

Journal of Image and Graphics, Vol. 12, No. 3, 2024

25910.18178/joig.12.3.259-268doi:

mailto:hanen_issaoui78@yahoo.fr
mailto:asma.eladel@ieee.org
mailto:mourad.zaied@ieee.org

transformation that the activation function does as well as

its derivation, which will be utilized to modify the weight

during retropropagation.

Our objective in this article is to construct a CNN that

is more secure and resistant to attacks by employing an

unidentified polynomial. The polynomial selected should

be simple and close to the most commonly used activation

functions. In addition, batch normalization has been

evoked to considerably improve the learning capacity of

neural networks. Ioffe and Szegedy [14] created the idea

of batch normalization. To maintain a constant and

predictable distribution at the input points of the activation

function. The polynomial approximation only needs to be

accurate over a limited and fixed range when such

normalization is performed. It allows more stable data to

be acquired because the data is at the same scale. This

allows the neural network to train faster [15].

The main contributions of this work are as follows:

Using the Beta function to approximate the ReLU,

Sigmoid, and Tanh functions. The Beta function can be

parameterized, which makes it possible to approximate the

basic functions very closely [16]. We use the Beta function

to approximate the ReLU activation function. To

approximate the Sigmoid and the Tanh, we use primitives

of the Beta function. The new polynomials obtained have

been used as the activation function in the proposed model.

We also apply batch normalizations to ensure that data

from multiple sources fall within the same range. Next, we

implemented the CNN model with the polynomial

approximations obtained as activation functions. To

analyze the performance of the modified models, training

was performed on a dataset encrypted using homomorphic

encryption. Comparisons are then made between the CNN

model using the current ReLU, Sigmoid, and Tanh

activation functions and the same model to which we have

applied the approximation polynomials obtained. Finally,

we present results for two datasets widely used in deep

learning, Mnist and Cifar 10. The comparison is made to

better appreciate the robustness of the method.

Our document is structured to provide an overall

understanding of our approach and its implications.

Section II provides an overview and background

information. Then, in Section III, we present the Beta

function for approximating activation functions and its

application in our method. Section IV describes our

proposed approach. Experimental results, which are based

on the Mnist and Cifar 10 datasets are delineated in

Section V. Finally, Section VI then presents a conclusion

summarising our results and future work directions to

explore potential avenues for further research.

II. OVERVIEW AND BACKGROUND INFORMATION

In this section, we describe the methods used to develop

our contribution. We give a general overview of

homomorphic encryption, activation functions,

polynomial approximation, and batch normalization.

A. Homomorphic Encryption

Homomorphic encryption is a robust protection barrier

for data confidentiality. It is also an advanced encryption

technique that allows operations to be carried out on

encrypted data without first decrypting it. This unique

property paves the way for the secure handling of sensitive

data, even in environments where confidentiality is

crucial. By integrating homomorphic encryption into the

deep learning process, researchers can ensure that sensitive

information remains encrypted throughout the learning

and inference process, offering better protection against

privacy breaches [17]. Homomorphic Encryption (HE) is

a leading method for protecting and maintaining data

confidentiality. Data can be processed even when it is

encrypted thanks to this type of encryption. Homomorphic

encryption refers to a class of cryptographic methods that

meet the homomorphic property. In mathematics, a

transformation that preserves the original structure is

known as a homomorphism [3]. The principle of

homomorphic encryption is illustrated in the Fig. 1.

Fig. 1. Outline of inference on HE [18].

Some operations, such as addition and multiplication,

can be performed directly on the encrypted data to ensure

that the result of decryption is the same as if the operation

had been performed on the original data. This is a special

feature that conventional encryption methods do not take

into account [14]. Many mathematical models deal with

addition, multiplication, or both [12, 16, 17]. It seems

strange that the data must first be decoded before accurate

calculations can be made using traditional procedures. The

confidentiality of the data is jeopardized as soon as

decryption is complete. It is therefore essential to know the

most effective approach for HE to overcome this

contradiction. The fact that it has taken the cryptographic

community over 30 years to develop a solution shows just

how difficult the answer is. Craig Gentry presented the

first answer in 2009, although it was purely theoretical [18].

To make these ideas more applicable, several research

projects have been carried out since then, for

example [19−23].

B. Activation Functions

Each convolutional layer in a neural network is typically

succeeded by an activation layer, which serves as a non-

linear function. Activation functions are essential for

introducing non-linearity between consecutive layers in a

network. They help in cascading linearity between layers

if the activation function relates to cached layers of the

network and in constraining the values of a layer within a

specified range if the activation function is applied to the

final layer [24, 25]. In practical applications, widely-used

activation functions such as ReLU, Sigmoid, and Tanh are

commonly employed [1, 26]. Each activation function

Journal of Image and Graphics, Vol. 12, No. 3, 2024

260

operates on a single number and performs a predetermined

mathematical operation. Below, we list the activation

functions discussed in this paper, along with their

corresponding mathematical expressions.

• Rectified Linear Unit (ReLU). ReLU replaces negative

values with zero, resulting in a simple yet effective

activation function. The ReLU function is defined as:

ReLU(x) = max (0, x) (1)

• Sigmoid. Sigmoid squashes the input values between 0

and 1, making it suitable for binary classification tasks.

The sigmoid function is defined as:

σ(x) = 1/ (1+e−x) (2)

• Tanh (Hyperbolic Tangent). Tanh squashes the input

values between −1 and 1, allowing a better

representation of negative values compared to sigmoid.

The hyperbolic tangent function is defined as:

Tanh(x) =
2

1+𝑒−2𝑥 − 1 (3)

These activation functions are fundamental building

blocks in neural networks, each offering unique properties

and suitability for different tasks. Our contribution in this

paper is based on the approximation of polynomials for

these functions, which only use addition and multiplication

operations since we cannot compute them on encrypted

values [25]. We focus on neural activity because our main

goal is to adopt a CNN capable of operating with, HE

restrictions. In addition, the construction of activation

functions in neurons is prohibited by the impossibility of

using encrypted data (addition and multiplication). So, to

act on encrypted data, we need to discover equivalent

replacement functions. Polynomials that can be

implemented using simple addition and multiplication

operations can be used to approximate the majority of

functions, including the activation functions used in CNNs.

We study polynomial approximations of the common

CNN, ReLU, Sigmoid, and Tanh activation functions, and

choose the one that most closely approximates each

activation function. To find the best approximation, we

used the Beta function to approximate the ReLU activation

function. To approximate the Sigmoid and Tanh, we used

the primitives of the Beta function for the hidden layers of

the CNN. When choosing the optimal activation function,

we take into account the direct transformation that the

activation function applies to the data, as well as its

derivative, which will be used to modify the weights

during backpropagation [26].

C. Polynomial Approximation

For many applications, including signal processing,

multimedia, and neural networks, an accurate

approximation of the activation functions is required [12].

In general, we can approximate activation functions with a

variety of polynomials. Higher-level polynomials provide

a more accurate approximation and, when they replace the

activation function in a CNN, they improve the

performance of the model created. However, when

operations are performed on encrypted data, higher-degree

polynomials result in very slow calculations. A

compromise must therefore be found between the

performance of the model and the degree of polynomial

approximation [1]. We propose a solution for the

polynomial approximation of the ReLU, Sigmoid, and

Tanh activation functions. Then, using these polynomials,

we created a CNN model and compared the results with

those of models using the original activation functions. In

the literature, several studies have been carried out in this

context. Chabanne et al. [5] used the Taylor series to

approximate the sigmoid function using a polynomial of

degree 2. According to H. Ehsan in [1], the sigmoid

function has also been approximated by polynomials. In

their experience, 99.73% of the values lie in the interval

[−3, 3]. Cheon et al. [26] proposed an approximation

method that minimized the mean square error. They

approximated the sigmoid function on the interval [−8, 8]

with different degrees (3 and 7) [27]. The choice of an

appropriate approximate polynomial can affect the

complexity and depth of the activation layers. According

to Xie et al. [13], the technique is to approximate these

functions using low-degree polynomials. Numerous ReLU

function approximations are discussed in the literature [13],

including, for example, the Taylor series and the

Chebyshev polynomial [3, 6, 22]. In this paper, we present

a formal approach for approximating ReLU, Sigmoid, and

Tanh functions based on polynomial functions. Although

the activation function is crucial for the learning phase, it

is also well known that it opens the door to attacks on the

network.

Furthermore, the use of HE in our case is incompatible

with non-polynomial activation functions. The ReLU,

Sigmoid, and Tang functions belong to the category of

non-polynomial functions. This is why we suggest using a

new activation function.

D. Batch Normalization

Another improvement we are making to the proposed

model is to incorporate batch normalization between

framed layers. The aim is to ensure that the data is

contained within a specific interval. This makes the model

reliable and efficient [6, 26]. Loffe and Szegedy [14]

introduced the concept of batch normalization as a

regularisation strategy in 2015. Batch normalization is

used in the context of deep

learning [12, 27], it is one of the most effective

regularisation techniques in Deep Learning, to improve

network performance. Batch normalization is a

preprocessing technique that allows data from many

sources to fit into a single range. Normalizing data before

learning can increase the effectiveness and efficiency of

the process [25]. We include batch normalization

functionality between neural network layers [28−30].

Before sending it to the next layer, it takes the output of

the previous layer and normalizes it.

Journal of Image and Graphics, Vol. 12, No. 3, 2024

261

III. THE BETA FUNCTION FOR APPROXIMATION OF

ACTIVATION FUNCTIONS

In our work, we used the beta function as the basis for

our approximation [31]. It was used to approximate the

ReLU activation function. The Beta distribution is a type

of probability distribution that represents all possible

outcomes of the data set. The general formula for the Beta

function is given by Eq. (4).

𝐵eta(𝑥) = (
𝑥−𝑎

𝑐−𝑎
)

𝑝

 (
𝑏−𝑥

𝑏−𝑐
)

𝑞

 (4)

where:

𝑐 =
𝑎𝑝+𝑏𝑞

𝑝+𝑞

p, q: natural numbers > 0, the shape parameters.

a, b: upper and lower bounds where a≤x≤ b.

To approximate the Sigmoid and Tanh activation

function, we used the primitive of the Beta function.

The formula for the primitive of Beta is given by the

following Eq. (5):

[∑
𝑞!

(𝑞−𝑘+1)!

𝑞+1
𝑘=1 

𝑝!

(𝑝+𝑘)!
(𝑥 − 𝑎)𝑝+𝑘 (𝑏 −

𝑥)𝑞−𝑘+1] 
1

(𝑐−𝑎)𝑝(𝑏−𝑐)𝑞 (5)

The parameters a, b, p, and q of the Beta function and

its primitives are adjusted so that it is as close as possible

to the approximation functions studied in this paper. To

adjust the parameters, we used the gradient descent

algorithm. The principle is described in the following

algorithm:

Algorithm: Adjustment of the parameters a, b, p, and q of the

Beta function using the gradient descent algorithm.

Result: Optimized parameters a, b, p, q

//Initialize parameters a, b, p, q with random values

a←random_value

b←random_value

p←random_value

q←random_value

//Initialize learning rate alpha

α←0.01

//Initialize maximum number of iterations max_iter

max_iter←1000

//Initialize previous error with a high value

preferred←10000

//Initialize iteration counter

iter_count←0

//Gradient Descent

while (iter_count ≤ max_iter) and (error ≥ tolerance) do

//Compute current error

 //Check for convergence

 If (current error < tolerance) then

 Exit the loop

 else

//Update Parameters

For each parameter (a, b, p, q) do

//Compute current error using the previously defined

error function

//Update the parameter based on the gradient and α:

a←a−α*gradient(a)

b←b−α*gradient(b)

p←p−α*gradient(p)

q←q−α*gradient(q)

end

//Handle learning rate α adjustment

//Increment iter_count

If (current error > previous error) then

Reduce learning rate α

Update previous error

end

end

end

Return the optimized parameters a, b, p, q

IV. PROPOSED APPROACH

Access to private data is critical, making CNN

vulnerable to attack. However, we propose a method for

securing the model that consists of modifying the

activation function without causing a malfunction of the

neuron’s internal activity [32]. To improve the accuracy of

classification by a CNN network on data encrypted using

HE homomorphic encryption, we approximated the ReLU

activation function by a polynomial using the Beta

function, and for the Sigmoid and Tanh activation

functions, we used the Beta primitive to approximate them.

The various steps are illustrated in Fig. 2.

Fig. 2. CNN using Beta activation functions approximations on homomorphic encryption.

Journal of Image and Graphics, Vol. 12, No. 3, 2024

262

Neural networks require the use of an activation

function at the output of each neuron [15]. As a first step,

we propose to develop a new low-degree polynomial to be

applied to the different convolutional layers of the CNN

network [16−18]. As this polynomial is unknown, so it will

be difficult to attack the network.

Our approach is based on the use of the Beta function

Eq. (4) and its corresponding primitive Eq. (5). These

functions can be parametrically tuned, allowing their

parameters (a, b, p, q) to be modified to obtain the most

optimal approximation in each case.

By adjusting the parameter values, we achieve optimal

approximations for each activation function. The

approximation expressions for each activation function,

based on the optimal values of the adjusted parameters,

along with the resulting approximation polynomials, are

presented below.

1) Approximation of the ReLU activation function

The expression for the approximation of the ReLU

activation function with the Beta function is given by the

following expression:

 0.74  Beta (
(𝑥−0.99)

6.8
). (6)

The optimal values of the parameters:

(a, b, c) = (−0.7, −5, −3.57),

(p, q) = (1, 2).

The mathematical expression of the approximation

polynomial (Polynomial 1) of the ReLU activation

function with the Beta function, obtained by developing

Eq. (6) according to the parameters previously introduced,

is represented by Eq. (7) below:

Polynomial 1

−

2510000(−
5(𝑥−

99
100)

34
−5)

2



(
5(𝑥−

99
100)

34
−

9

10
)

1819961
 (7)

The approximation of the ReLU activation function

based on the Beta function according to Polynomial 1 is

illustrated in Fig. 3.

Fig. 3. Polynomial approximation of the ReLU activation function using Polynomial 1 (Eq. (7)).

2) Approximation of the Sigmoid activation function

To approximate the Sigmoid activation functions, we

relied on the primitive of the Beta function. The

approximation expression with the primitive of the Beta

function is given by the following expression:

0.5 +1.125  Primitive_Beta (0.6x) (8)

The optimal values of the parameters:

(a, b, c) = (−0.9, 0.9, 0),

(p, q) = (2, 2).

The mathematical expression of the approximation

polynomial (Polynomial 2) of the Sigmoid activation

function with the primitive of the Beta function, obtained

by developing Eq. (8) according to the parameters

previously introduced, is represented by Eq. (9) below:

Polynomial 2

67  (
125𝑥5

64
 −

675𝑥3

8
 +

6561𝑥

4
)

437400
+

1

2
 (9)

The approximation of the Sigmoid activation function

based on the primitive of the Beta function according to

Polynomial 2 is illustrated in Fig. 4.

Journal of Image and Graphics, Vol. 12, No. 3, 2024

263

Fig. 4. Polynomial approximation of the Sigmoid activation function using Polynomial 2 (Eq. (9)).

3) Approximation of the Tanh activation function

We use the primitive of the Beta function to

approximate the Tanh activation function. The

approximation expression with the primitive of the Beta

function is given by the following expression:

1.5  Primitive_Beta (0.6x). (10)

The optimal values of the parameters:

(a, b, c) = (−0.9, 0.9, 0),

(p, q) = (2, 2).

The mathematical expression of the approximation

polynomial (Polynomial 3) of the Sigmoid activation

function with the primitive of the Beta function, obtained

by developing Eq. (10) according to the parameters

previously introduced, is represented by Eq. (11) below:

Polynomial 3
125𝑥5

64
 −

675𝑥3

8
 +

 6561𝑥

4

4374
 (11)

Polynomial 3 represents the function of the

approximation obtained and Fig. 5 shows the shape of the

curve.

In this paper, we first use the polynomials obtained as

activation functions in the proposed model. The activation

functions ReLU, Sigmoid, and Tanh are replaced by the

polynomials given by Eqs. (7), (10) and (11), respectively.

Secondly, the addition of batch normalization between the

CNN layers improves the efficiency and performance of

the network. This Batch Normalization (BN) was used to

ensure that the data fell within the defined range.

The new model was then trained on an encrypted

training set using homomorphic encryption. Finally, we

evaluate our method using the Mnist and Cifar 10 datasets,

two datasets frequently used in deep learning.

Fig. 5. Polynomial approximation of the Tanh activation function using Polynomial 3 (Eq. (11)).

Journal of Image and Graphics, Vol. 12, No. 3, 2024

264

V. EXPERIMENTAL RESULTS

We have conducted experiments on the Mnist [33] and

Cifar-10 [34] datasets. Mnist is a collection of 60,000

images depicting handwritten digits. Each image is

represented as a 2828 pixel array, where the gray level of

each pixel ranges from 0 to 255. In our study, we utilized

the training portion of the Mnist dataset, which consists of

50,000 images, to train a neural network. The remaining

10,000 images were employed for testing purposes. The

Cifar-10 dataset comprises 60,000 images, with 50,000

images designated for training and 10,000 for testing. Each

image in the Cifar-10 dataset is an RGB image consisting

of 3×32×32 pixels. Additionally, each image is assigned a

label corresponding to one of ten classes.

A first comparison is made using our proposed CNN

model architecture. This comparison is made using the

original activation functions on the one hand, and the

approximation polynomials proposed using our approach

on the other. The results of the evaluation of Mnist are

presented in Table I.

TABLE I. PERFORMANCE OF THE PROPOSED CNN USING ACTIVATION

FUNCTIONS AND THEIR POLYNOMIAL APPROXIMATIONS USING THE

MNIST DATASET

Activation

function

Original

Model

Model with Our

Approach (MNIST)

ReLU 98.48% 98.86%

Sigmoid 98.67% 98.78%

Tanh 98.01% 97.76%

We examined the impact of polynomial approximations

of activation functions on the MNIST dataset. We

observed that the polynomial approximation of the ReLU

activation function, obtained from the beta function,

produced the best results when integrated into the layers of

our proposed architecture. These results indicate that this

combination offers a significant performance

improvement on MNIST. In addition, the use of the

polynomial approximation of the Sigmoid activation

function, based on the beta primitive, also led to a slight

improvement in performance. However, the performance

of the polynomial approximation of the Tanh activation

function, also derived from the beta primitive, was slightly

lower.

To further test our approach, another evaluation was

carried out on the Cifar-10 dataset. The results are

presented in Table II.

TABLE II. PERFORMANCE OF THE PROPOSED CNN USING ACTIVATION

FUNCTIONS AND THEIR POLYNOMIAL APPROXIMATIONS USING THE

CIFAR-10 DATASET

Activation

function

Original

Model

Model with Our Approach

(Cifar 10)

ReLU 97.87% 97.94%

Sigmoid 96.32% 96.13%

Tanh 95.22% 93.06%

Using Cifar10, we find that the approximation

polynomials for the ReLU and Sigmoid activation

functions obtained perform better when used in the layers

of the CNN architecture we propose. Whereas, the

approximation polynomial for the Tanh activation function

performs worse.

In the experimental part, we use the Mnist and Cifar-10

datasets encrypted by homomorphic encryption to evaluate

the new model, and the results indicate that the

classification accuracy of the encrypted Mnist dataset is

better than that of the Cifar-10 dataset. The results show

that the classification accuracy of the Mnist dataset can

reach 98.86% for the ReLU function, which is interesting

because the use of unknown polynomials is an important

aspect of the security and protection of machine learning

models. The experimental results demonstrate the merits

of the approach, which preserves privacy in predictions.

To better assess the effectiveness of our approach, a

second comparison was carried out. Table III presents the

results of the comparison between the results presented in

the literature and our own. The polynomials presented

concern the approximation of the ReLU function on the

Mnist dataset, each using its polynomial [35, 36]. The

values obtained are given in Table III.

Table III shows the different results obtained for the

Mnist dataset using different approaches. At the end of the

evaluation, we obtained a classification accuracy of

98.86%, which is very close to the CryproDL (99.52%)

and CryptoNets (98.95%) approaches. On the other hand,

our accuracy is better than the three methods [19]

(98.82%), [37] (93.40%) and [38] (98.44%).

TABLE III. COMPARISON OF THE EFFECTIVENESS OF OUR APPROACH

WITH OTHER METHODS PROPOSED USING THE MNIST DATA SET AND

POLYNOMIAL APPROXIMATIONS OF THE RELATED ACTIVATION

FUNCTION

Proposed method Accuracy

CryptoDL [1] 99.52%

CryptoNets [3] 98.95%

Ishiyama et al. [19] 98.82%

SecureML [39] 93.40%

Ana et al. [40] 98.44%

Our approach 98.86%

TABLE IV. THE APPROXIMATION POLYNOMIALS OBTAINED BY

SEVERAL POINTS EQUAL TO 5 AND IN THE RANGE [−2, 2]

Activation

function

Polynomial approximations using

Lagrange interpolation

ReLU
−0.083333333333333x4

+ 0.583333333333333x2 + 0.5x

Sigmoid

 0.000021764439479x4
−0.013605563373428x3

+ 0.000043182201679x2

+ 0.244733041370182x + 0.5

Tanh

 0.000396751423111x4
− 0.094230782415271x3
− 0.001587005692445x2

+ 0.858936919698991x

To further test our approach, a third comparison is

carried out. We approximate the ReLU, Sigmoid, and Tanh

activation functions using Lagrange

interpolations [33, 34] and then compare the results

obtained with the polynomials we have already proposed.

The approximation polynomials obtained with several

points equal to 5 and in the interval [−2, 2] are presented

in Table IV.

Journal of Image and Graphics, Vol. 12, No. 3, 2024

265

Fig. 6(a)−(c) shows successively the ReLU, Sigmoid,

and Tanh activation functions and their polynomial

approximations of our approach, as well as the

approximations obtained by Lagrange interpolation in the

interval [−2, 2].

(a)

(b)

(c)

Fig. 6. The ReLU, Sigmoid, and Tanh activation functions and their polynomial approximations, (a) Our proposed polynomial approximation

(Polynomial 1) and the Lagrange interpolation approximation of the ReLU activation function, (b) Our proposed polynomial approximation (Polynomial

2) and the Lagrange interpolation approximation of the Sigmoid activation function, (c) Our proposed polynomial approximation (Polynomial 3) and

the Lagrange interpolation approximation of the Tanh activation function.

Journal of Image and Graphics, Vol. 12, No. 3, 2024

266

We implement the proposed new model by changing,

each time, the ReLU, Sigmoid, and Tanh activation

functions by polynomial approximations obtained using

Lagrange interpolation. The comparison is made using the

mnist dataset (Table V).

TABLE V. THE CNN’S PERFORMANCE USING A POLYNOMIAL

APPROXIMATION WITH LAGRANGE INTERPOLATION OF THE ACTIVATION

FUNCTIONS ON MNIST DATA SET

Activation

Function

Approximation

Lagrange

Model with

Our approach

ReLU 98.18% 98.86%

Sigmoid 97.85% 98.78%

Tanh 97.92% 97.76%

On the Mnist dataset, we find that the ReLUactivation

function approximation polynomial, obtained using the

Beta function, gives the best results when used in the layers

of our proposed architecture. On the other hand, the

approximation polynomial of the Sigmoid activation

function obtained using the Beta primitive, slightly

improves performance compared to the polynomial

obtained by approximation using Lagrange interpolation.

For the polynomial approximating the Tanh function, also

obtained using the Beta primitive, performance is slightly

lower.

VI. CONCLUSION AND FUTURE WORK

In this article, we proposed a new strategy to enhance

the privacy and security of data in neural networks. We

introduced innovative approaches to approximate the

ReLU activation function using the Beta function and its

primitive for Sigmoid and Tanh approximations. This

method offers increased flexibility due to the

parametrizability of the Beta function, allowing for better

approximation and making the model more resilient to

attacks. Concurrently, we optimized the model’s

performance by adding additional layers of batch

normalization in a CNN. The utilization of the

homomorphic encryption algorithm on encrypted data was

also implemented to reinforce the confidentiality of

processed information. To evaluate our approach, we

utilized the Mnist and Cifar 10 databases, demonstrating

that our method yields accurate, precise, and scalable

predictions. The experimental results validate the merits of

our approach. By combining the use of unknown

polynomials with the flexibility of the Beta function, we

significantly reduce the likelihood of attacks and enhance

model confidentiality. Integrating these unknown

polynomial approximations into activation functions adds

an extra layer of security, particularly crucial in sensitive

domains where data protection is paramount. In conclusion,

our approach not only improves model performance but

also strengthens security by providing additional defense

against attacks. The flexibility of the Beta function used as

an approximation base allows for precise adaptation,

constituting a major asset for achieving maximal

approximation.

For future work, a deeper exploration of the possibilities

offered by the Beta function in approximating activation

functions could be pursued. Additionally, investigating the

impact of different normalization and encryption methods

on model performance and security would be worthwhile.

Moreover, extending this approach to other types of neural

networks and more complex datasets could open up new

avenues in the field of data protection and privacy in

machine learning.

CONFLICTS OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Hanen Issaoui proposed the article’s idea, implemented

it, conducted experiments, wrote and revised the

manuscript, designed the experiments and analyzed and

interpreted the results; Asma ElAdel contributed to the

methodology's structure, participated in article writing,

revised the manuscript, helped refine the research results,

and contributed to the analysis and interpretation of the

data; Mourad Zaie led the research, assisted in refining the

research results, analyzed and interpreted the data,

approved its content, and provided guidance; All authors

had approved the final version.

REFERENCES

[1] E. Hesamifard, H. Takabi, and M. Ghasemi, “CryptoDL: Deep

neural networks over encrypted data,” arXiv preprint arXiv: 1711.

05189, 2017.

[2] P. Paillier, “Public-key cryptosystems based on composite degree

residuosity classes,” Springer eBooks, 2007, pp. 223–238. doi:

10.1007/3-540-48910-x_16

[3] N. Dowlin, R. G. Bachrach, K. Laine, K. Lauter, M. Naehrig, and J.

Wernsing, “CryptoNets: Applying neural networks to encrypted

data with high throughput and accuracy,” in Proc. International

Conference on Machine Learning, Jun. 2016, pp. 201–210.

[4] N. Chaibi, A. ElAdel, and M. Zaied, “SR-Net: A super-resolution

image based on DWT and DCNN,” Hybrid Intelligent Systems. HIS

2022, pp. 291–301, Jan. 2022, doi: 10.2139/ssrn.4113833.

[5] H. Chabanne, A. De Wargny, J. Milgram, C. Morel, and E. Prouff,

“Privacy-preserving classification on deep neural network,” IACR

Cryptologye Print Archive, vol. 2017, 35, Jan. 2017.

[6] Y. LeCun, P. Haffner, L. Bottou, and Y. Bengio, “Object

recognition with gradient-based learning,” Lecture Notes in

Computer Science, 1999, pp. 319–345. doi: 10.1007/3-540-46805-

6_19

[7] H. Issaoui, A. E. Adel, and M. Zaied, “B-CNN: Beta deep

convolutional neural network over encrypted data,” in Proc.

International Conference on Machine Vision, Jun. 2023.

doi: 10.1117/12.2679393

[8] R. L. Rivest and M. L. Dertouzos, “On data banks and privacy

homomorphisms,” Foundations on Secure Computation, Academia

Press, pp. 1–11, Jan. 1978.

[9] E. Hesamifard, H. Takabi, and M. Ghasemi, “Deep neural networks

classification over encrypted data,” in Proc. Ninth ACM Conference

on Data and Application Security and Privacy, 2019, pp. 97–108.

doi: 10.1145/3292006.3300044

[10] N. Chaibi, A. ElAdel, and M. Zaied, “Deep convolutional neural

network based on WaVeLet transform for super image resolution,”

Advances in Intelligent Systems and Computing, 2021, pp. 114–123.

doi: 10.1007/978-3-030-73050-5_12.

[11] T. ElGamal, “A public key cryptosystem and a signature scheme

based on discrete logarithms,” IEEE Transactions on Information

Theory, vol. 31, no. 4, pp. 469–472, Jul. 1985.

doi: 10.1109/tit.1985.1057074

[12] P. B. Mathayo and D. K. Kang, “Beta and alpha regularizers of mish

activation functions for machine learning applications in deep

neural networks,” International Journal of Internet, Broadcasting,

and Communication, vol. 14, no. 1, pp. 136–141, 2022.

Journal of Image and Graphics, Vol. 12, No. 3, 2024

267

[13] P. Xie, M. Bilenko, T. Finley, R. Gilad-Bachrach, K. Lauter, and M.

Naehrig, “Crypto-nets: Neural networks over encrypted data,”

arXiv preprint, arXiv:1412.6181, Dec. 2014.

[14] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep

network training by reducing internal covariate shift,” in Proc.

Machine Learning Research, 2015, vol. 37.

[15] R. L. Rivest, A. Shamir, and L. M. Adleman, “A method for

obtaining digital signatures and public-key cryptosystems,”

Communications of the ACM, vol. 21, no. 2, pp. 120–126, Feb. 1978.

doi: 10.1145/359340.359342

[16] D. J. Myers and R. Hutchinson, “Efficient implementation of

piecewise linear activation function for digital VLSI neural

networks,” Electronics Letters, vol. 25, no. 24, 1662, Jan. 1989.

doi: 10.1049/el:19891114

[17] H. Akouaydi, S. Njah, W. Ouarda, A. Samet, M. Zaied, and A. M.

Alimi, “Convolutional neural networks for online arabic characters

recognition with beta-elliptic knowledge domain,” in Proc.

International Conference on Document Analysis and Recognition

Workshops (ICDARW), vol. 1, Sep. 2019.

doi: 10.1109/icdarw.2019.50114

[18] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated Learning:

challenges, methods, and future directions,” IEEE Signal

Processing Magazine, vol. 37, no. 3, pp. 50–60, May 2020.

doi: 10.1109/msp.2020.2975749

[19] T. Ishiyama, T. Suzuki, and H. Yamana, “Highly accurate CNN

inference using approximate activation functions over

homomorphic encryption,” in Proc. IEEE International Conference

on Big Data, 2020, pp. 10–13.

doi: 10.1109/bigdata50022.2020.9378372

[20] D. Boneh, E. J. Goh, and K. Nissim, “Evaluating 2-DNF formulas

on ciphertexts,” Lecture Notes in Computer Science, pp. 325–341,

2005. doi: 10.1007/978-3-540-30576-7_18

[21] Everything You Should Know About Dropouts and Batch

Normalization. [Online]. Available:

https://analyticsindiamag.com/everything-you-should-know-

about-dropouts-and-batchnormalization-in-cnn

[22] C. Gentry, A. Sahai, and B. Waters, “Homomorphic encryption

from learning with errors: Conceptually-simpler, asymptotically-

faster, attribute-based,” Lecture Notes in Computer Science, pp. 75–

92, 2013. doi: 10.1007/978-3-642-40041-4_5

[23] A. A. Badawi et al., “Towards the AlexNet moment for

homomorphic encryption: HCNN, the first homomorphic CNN on

encrypted data with GPUs,” IEEE Transactions on Emerging

Topics in Computing, vol. 9, no. 3, pp. 1330–1343, Jul. 2021.

doi: 10.1109/tetc.2020.3014636

[24] N. Chaibi, N. B. Aoun, A. ElAdel, and M. Zaied, “Image super

resolution boosting using beta wavelet,” Signal, Image and Video

Processing, Dec. 2023. doi: 10.1007/s11760-023-02887-3

[25] S. Kılıçarslan, K. Adem, and M. Çelik, “An overview of the

activation functions used in deep learning algorithms,” Journal of

New Results in Science, vol. 10, no. 3, pp. 75–88, Dec. 2021.

doi: 10.54187/jnrs.1011739

[26] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) fully

homomorphic encryption without bootstrapping,” Electronic

Colloquium on Computational Complexity, pp 1–36, Jan. 2012.

doi: 10.1145/2090236.2090262

[27] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic

encryption for arithmetic of approximate numbers,” Lecture Notes

in Computer Science, pp. 409–437, 2017. doi: 10.1007/978-3-319-

70694-8_15

[28] A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, “A survey on

homomorphic encryption schemes,” ACM Computing Surveys, vol.

51, no. 4, pp. 1–35, Jul. 2018. doi: 10.1145/3214303

[29] A. ElAdel, M. Zaied, and C. B. Amar, “Fast DCNN based on FWT,

intelligent dropout and layer skipping for image retrieval,” Neural

Networks (Print), vol. 95, pp. 10–18, Nov. 2017.

doi: 10.1016/j.neunet.2017.07.015

[30] A. ElAdel, R. Ejbali, M. Zaied, and C. B. Amar, “A new semantic

approach for CBIR based on beta Wavelet network modeling shape

refined by texture and color features,” Lecture Notes in Computer

Science, pp. 378–385, 2014. doi: 10.1007/978-3-319-10840-7_46

[31] L. J. M. Aslett, P. M. Esperança, and C. Holmes, “A review of

homomorphic encryption and software tools for encrypted

statistical machine learning,” arXiv preprint, arXiv:1508.06574,

2015.

[32] B. Radhia, “Approximation with activation functions and

applications,” African Journal of Research in Computer Science

and Applied Mathematics, vol. 32, 2021.

[33] J.P. Demailly, “Numerical analysis and differential equations,”

EDP Sciences eBooks, vol.1, 2022.

[34] M. Vlček, “Chebyshev polynomial approximation for activation

sigmoid function,” Neural Network World, vol. 22, no. 4, pp. 387–

393, Jan. 2012. doi: 10.14311/nnw.2012.22.023

[35] C. F. Dunkl and Y. Xu, “Orthogonal polynomials of several

variables,” arXiv preprint, arXiv: 1701.02709, 2014.

doi: 10.1017/cbo9781107786134

[36] W. M. Fatihia, A. Fariza, and T. Karlita, “CNN with batch

normalization adjustment for offline hand-written signature

genuine verification,” JOIV: International Journal on Informatics

Visualization, vol. 7, no. 1, p. 200, Feb. 2023, doi:

10.30630/joiv.7.1.1443.

[37] Y. L. Cun and al., “Comparison of learning algorithms for

handwritten digit recognition,” Computer Science, pp. 53–60, Jan.

1995.

[38] V. Thakkar, S. Tewary, and C. Chakraborty, “Batch normalization

in convolutional neural networks—A comparative study with

CIFAR-10 data,” in Proc. Fifth International Conference on

Emerging Applications of Information Technology, vol. 2, Jan.

2018. doi: 10.1109/eait.2018.8470438

[39] P. Mohassel and Y. Zhang, “SecureML: A system for scalable

privacy-preserving machine learning,” in Proc. IEEE Symposium

on Security and Privacy, pp. 22−27, May 2017.

doi: 10.1109/sp.2017.12

[40] A. Stanojevic, E. Eleftheriou, G. Cherubini, S. Woźniak, A. Pantazi,

and W. Gerstner, “Approximating ReLU networks by single-spike

computation,” in Proc. 2022 IEEE International Conference on

Image Processing (ICIP), Oct. 2022, vol. 16.

doi: 10.1109/icip46576.2022.9897692

Copyright © 2024 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

Journal of Image and Graphics, Vol. 12, No. 3, 2024

268

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

