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Abstract—Deep neural network-based machine learning 

algorithms are widely used within different sectors and 

produce excellent results. However, their use requires access 

to private, often confidential, and sensitive information 

(financial, medical, etc). This requires precise measures and 

particular attention to data security and confidentiality. In 

this paper, we propose a new solution to this problem by 

integrating a proposed Convolutional Neural Network 

(CNN) model on encrypted data within the constraints of 

homomorphic encryption techniques. Specifically, we focus 

on the approximate activation functions ReLU, Sigmoid, and 

Tanh, which appear to be the key functions of CNNs. We 

start by developing new low-degree polynomials, which are 

essential for successful Homomorphic Encryption (HE). The 

activation functions will be replaced by these polynomials, 

which are based on the Beta function and its primitive. To 

make certain that the data is contained within a given range, 

the next step is to build a new CNN model using batch 

normalization. Finally, our methodology and the 

effectiveness of the proposed strategy are evaluated using 

Mnist and Cifar10. The experimental results support the 

proposed approach’s efficiency.   
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I.     INTRODUCTION 

As prospective developments in the field of artificial 

intelligence, machine learning techniques based on neural 

network architectures have attracted attention [1]. Neural 

networks seek to solve the problem of classification by 

correctly classifying new observations based on training 

data sets for which the classification is known [1−4]. Since 

these techniques require access to private data, several 

research studies have been carried out in recent years on 

how different machine learning algorithms, such as neural 

network learning algorithms, preserve data confidentiality 

[5, 6]. Modifying the activation function, encrypting 

incoming data, and running the homomorphic encryption 
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model are all examples of network security methods [7]. 

The host does not have access to the keys required to 

decrypt the data, hence the encryption mechanism ensures 

its confidentiality [8]. These initiatives propose to encrypt 

both the model and the input data. Among these techniques, 

a technology known as CryptoDL [1] enables deep neural 

network algorithms to function on encrypted data and 

allows services to be given without divulging the study’s 

data [1, 8]. Convolutional Neural Networks (CNN) and 

Homomorphic Encryption (HE) are the two primary parts 

of CryptoDL. The principle of homomorphic encryption 

was first introduced by Rivest et al. [8] in 1978. The HE 

method, on the other hand, employs encryption and 

operates on CNNs with encrypted data [9].  

The complexity of the neural network, including the 

number of layers of each type and the complexity of the 

activation function, has considerable impact on the 

effectiveness of this method [10]. The benefit of 

homomorphic encryption is that it makes it possible to do 

computations on encrypted data without having access to 

the original data or the secret calculation key. Additionally, 

it is limited to adds and multiplications only. Additive and 

multiplicative homomorphic encryption methods, such as 

the Paillier cryptosystem [2] and the RSA or El Gamal 

encryption schemes [11], have been developed for many 

years. Later, other researchers created several additional 

HE methods [12]. The bulk of these encryption techniques 

do, however, have certain drawbacks. Some of them 

permit only one operation, as Paillier’s encryption 

method [2]. Among the non-polynomial activation 

functions that cannot be assessed homomorphically are the 

ReLU, Sigmoid, and Tanh activation functions. But it’s 

important to know whether a function can be roughly 

represented by a low-degree polynomial. In the solution by 

Xie et al. [13], low-degree polynomials were utilized to 

approximate these functions. Replace the convolutional 

neural network layer’s neurons with a polynomial 

activation function. When selecting the activation function, 

it is important to take into account both the direct data 
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transformation that the activation function does as well as 

its derivation, which will be utilized to modify the weight 

during retropropagation. 

Our objective in this article is to construct a CNN that 

is more secure and resistant to attacks by employing an 

unidentified polynomial. The polynomial selected should 

be simple and close to the most commonly used activation 

functions. In addition, batch normalization has been 

evoked to considerably improve the learning capacity of 

neural networks. Ioffe and Szegedy [14] created the idea 

of batch normalization. To maintain a constant and 

predictable distribution at the input points of the activation 

function. The polynomial approximation only needs to be 

accurate over a limited and fixed range when such 

normalization is performed. It allows more stable data to 

be acquired because the data is at the same scale. This 

allows the neural network to train faster [15]. 

The main contributions of this work are as follows: 

Using the Beta function to approximate the ReLU, 

Sigmoid, and Tanh functions. The Beta function can be 

parameterized, which makes it possible to approximate the 

basic functions very closely [16]. We use the Beta function 

to approximate the ReLU activation function. To 

approximate the Sigmoid and the Tanh, we use primitives 

of the Beta function. The new polynomials obtained have 

been used as the activation function in the proposed model. 

We also apply batch normalizations to ensure that data 

from multiple sources fall within the same range. Next, we 

implemented the CNN model with the polynomial 

approximations obtained as activation functions. To 

analyze the performance of the modified models, training 

was performed on a dataset encrypted using homomorphic 

encryption. Comparisons are then made between the CNN 

model using the current ReLU, Sigmoid, and Tanh 

activation functions and the same model to which we have 

applied the approximation polynomials obtained.  Finally, 

we present results for two datasets widely used in deep 

learning, Mnist and Cifar 10. The comparison is made to 

better appreciate the robustness of the method. 

Our document is structured to provide an overall 

understanding of our approach and its implications. 

Section II provides an overview and background 

information. Then, in Section III, we present the Beta 

function for approximating activation functions and its 

application in our method. Section IV describes our 

proposed approach. Experimental results, which are based 

on the Mnist and Cifar 10 datasets are delineated in 

Section V. Finally, Section VI then presents a conclusion 

summarising our results and future work directions to 

explore potential avenues for further research. 

II. OVERVIEW AND BACKGROUND INFORMATION

In this section, we describe the methods used to develop 

our contribution. We give a general overview of 

homomorphic encryption, activation functions, 

polynomial approximation, and batch normalization. 

A. Homomorphic Encryption

Homomorphic encryption is a robust protection barrier

for data confidentiality. It is also an advanced encryption 

technique that allows operations to be carried out on 

encrypted data without first decrypting it. This unique 

property paves the way for the secure handling of sensitive 

data, even in environments where confidentiality is 

crucial. By integrating homomorphic encryption into the 

deep learning process, researchers can ensure that sensitive 

information remains encrypted throughout the learning 

and inference process, offering better protection against 

privacy breaches [17]. Homomorphic Encryption (HE) is 

a leading method for protecting and maintaining data 

confidentiality. Data can be processed even when it is 

encrypted thanks to this type of encryption. Homomorphic 

encryption refers to a class of cryptographic methods that 

meet the homomorphic property. In mathematics, a 

transformation that preserves the original structure is 

known as a homomorphism [3]. The principle of 

homomorphic encryption is illustrated in the Fig. 1. 

Fig. 1. Outline of inference on HE [18]. 

Some operations, such as addition and multiplication, 

can be performed directly on the encrypted data to ensure 

that the result of decryption is the same as if the operation 

had been performed on the original data. This is a special 

feature that conventional encryption methods do not take 

into account [14]. Many mathematical models deal with 

addition, multiplication, or both [12, 16, 17]. It seems 

strange that the data must first be decoded before accurate 

calculations can be made using traditional procedures. The 

confidentiality of the data is jeopardized as soon as 

decryption is complete. It is therefore essential to know the 

most effective approach for HE to overcome this 

contradiction. The fact that it has taken the cryptographic 

community over 30 years to develop a solution shows just 

how difficult the answer is. Craig Gentry presented the 

first answer in 2009, although it was purely theoretical [18]. 

To make these ideas more applicable, several research 

projects have been carried out since then, for  

example [19−23]. 

B. Activation Functions

Each convolutional layer in a neural network is typically

succeeded by an activation layer, which serves as a non-

linear function. Activation functions are essential for 

introducing non-linearity between consecutive layers in a 

network. They help in cascading linearity between layers 

if the activation function relates to cached layers of the 

network and in constraining the values of a layer within a 

specified range if the activation function is applied to the 

final layer [24, 25]. In practical applications, widely-used 

activation functions such as ReLU, Sigmoid, and Tanh are 

commonly employed [1, 26]. Each activation function 
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operates on a single number and performs a predetermined 

mathematical operation. Below, we list the activation 

functions discussed in this paper, along with their 

corresponding mathematical expressions. 

• Rectified Linear Unit (ReLU). ReLU replaces negative 

values with zero, resulting in a simple yet effective 

activation function. The ReLU function is defined as:  

 

ReLU(x) = max (0, x)                      (1) 

 

• Sigmoid. Sigmoid squashes the input values between 0 

and 1, making it suitable for binary classification tasks. 

The sigmoid function is defined as:  

 

σ(x) = 1/ (1+e−x)                             (2) 

 

• Tanh (Hyperbolic Tangent). Tanh squashes the input 

values between −1 and 1, allowing a better 

representation of negative values compared to sigmoid. 

The hyperbolic tangent function is defined as:  

 

Tanh(x) = 
2

1+𝑒−2𝑥 − 1                       (3) 

 

These activation functions are fundamental building 

blocks in neural networks, each offering unique properties 

and suitability for different tasks. Our contribution in this 

paper is based on the approximation of polynomials for 

these functions, which only use addition and multiplication 

operations since we cannot compute them on encrypted 

values [25]. We focus on neural activity because our main 

goal is to adopt a CNN capable of operating with, HE 

restrictions. In addition, the construction of activation 

functions in neurons is prohibited by the impossibility of 

using encrypted data (addition and multiplication).  So, to 

act on encrypted data, we need to discover equivalent 

replacement functions. Polynomials that can be 

implemented using simple addition and multiplication 

operations can be used to approximate the majority of 

functions, including the activation functions used in CNNs.  

We study polynomial approximations of the common 

CNN, ReLU, Sigmoid, and Tanh activation functions, and 

choose the one that most closely approximates each 

activation function. To find the best approximation, we 

used the Beta function to approximate the ReLU activation 

function. To approximate the Sigmoid and Tanh, we used 

the primitives of the Beta function for the hidden layers of 

the CNN. When choosing the optimal activation function, 

we take into account the direct transformation that the 

activation function applies to the data, as well as its 

derivative, which will be used to modify the weights 

during backpropagation [26]. 

C. Polynomial Approximation 

For many applications, including signal processing, 

multimedia, and neural networks, an accurate 

approximation of the activation functions is required [12]. 

In general, we can approximate activation functions with a 

variety of polynomials. Higher-level polynomials provide 

a more accurate approximation and, when they replace the 

activation function in a CNN, they improve the 

performance of the model created. However, when 

operations are performed on encrypted data, higher-degree 

polynomials result in very slow calculations. A 

compromise must therefore be found between the 

performance of the model and the degree of polynomial 

approximation [1]. We propose a solution for the 

polynomial approximation of the ReLU, Sigmoid, and 

Tanh activation functions. Then, using these polynomials, 

we created a CNN model and compared the results with 

those of models using the original activation functions.  In 

the literature, several studies have been carried out in this 

context. Chabanne et al. [5] used the Taylor series to 

approximate the sigmoid function using a polynomial of 

degree 2. According to H. Ehsan in [1], the sigmoid 

function has also been approximated by polynomials. In 

their experience, 99.73% of the values lie in the interval 

[−3, 3]. Cheon et al. [26] proposed an approximation 

method that minimized the mean square error. They 

approximated the sigmoid function on the interval [−8, 8] 

with different degrees (3 and 7) [27].   The choice of an 

appropriate approximate polynomial can affect the 

complexity and depth of the activation layers. According 

to Xie et al. [13], the technique is to approximate these 

functions using low-degree polynomials. Numerous ReLU 

function approximations are discussed in the literature [13], 

including, for example, the Taylor series and the 

Chebyshev polynomial [3, 6, 22]. In this paper, we present 

a formal approach for approximating ReLU, Sigmoid, and 

Tanh functions based on polynomial functions.  Although 

the activation function is crucial for the learning phase, it 

is also well known that it opens the door to attacks on the 

network.  

Furthermore, the use of HE in our case is incompatible 

with non-polynomial activation functions. The ReLU, 

Sigmoid, and Tang functions belong to the category of 

non-polynomial functions. This is why we suggest using a 

new activation function. 

D. Batch Normalization 

Another improvement we are making to the proposed 

model is to incorporate batch normalization between 

framed layers.  The aim is to ensure that the data is 

contained within a specific interval. This makes the model 

reliable and efficient [6, 26]. Loffe and Szegedy [14] 

introduced the concept of batch normalization as a 

regularisation strategy in 2015. Batch normalization is 

used in the context of deep 

learning [12, 27], it is one of the most effective 

regularisation techniques in Deep Learning, to improve 

network performance. Batch normalization is a 

preprocessing technique that allows data from many 

sources to fit into a single range. Normalizing data before 

learning can increase the effectiveness and efficiency of 

the process [25]. We include batch normalization 

functionality between neural network layers [28−30]. 

Before sending it to the next layer, it takes the output of 

the previous layer and normalizes it. 
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III.   THE BETA FUNCTION FOR APPROXIMATION OF 

ACTIVATION FUNCTIONS 

In our work, we used the beta function as the basis for 

our approximation [31]. It was used to approximate the 

ReLU activation function. The Beta distribution is a type 

of probability distribution that represents all possible 

outcomes of the data set. The general formula for the Beta 

function is given by Eq. (4). 

 

𝐵eta(𝑥) = (
𝑥−𝑎

𝑐−𝑎
)

𝑝

 (
𝑏−𝑥

𝑏−𝑐
)

𝑞

                (4) 

 

where:  

𝑐 =
𝑎𝑝+𝑏𝑞

𝑝+𝑞
  

p, q: natural numbers > 0, the shape parameters.  

a, b: upper and lower bounds where a≤x≤ b.                

 

To approximate the Sigmoid and Tanh activation 

function, we used the primitive of the Beta function. 

The formula for the primitive of Beta is given by the 

following Eq. (5): 

 

[∑
𝑞!

(𝑞−𝑘+1)!

𝑞+1
𝑘=1 

𝑝!

(𝑝+𝑘)!
(𝑥 − 𝑎)𝑝+𝑘 (𝑏 −

𝑥)𝑞−𝑘+1] 
1

(𝑐−𝑎)𝑝(𝑏−𝑐)𝑞                                          (5) 

 

The parameters a, b, p, and q of the Beta function and 

its primitives are adjusted so that it is as close as possible 

to the approximation functions studied in this paper. To 

adjust the parameters, we used the gradient descent 

algorithm. The principle is described in the following 

algorithm: 

 

Algorithm: Adjustment of the parameters a, b, p, and q of the 

Beta function using the gradient descent algorithm. 

Result: Optimized parameters a, b, p, q 

//Initialize parameters a, b, p, q with random values 

a←random_value 

b←random_value 

p←random_value 

q←random_value 

//Initialize learning rate alpha 

α←0.01 

//Initialize maximum number of iterations max_iter 

max_iter←1000 

//Initialize previous error with a high value 

preferred←10000 

//Initialize iteration counter 

iter_count←0 

//Gradient Descent 

while (iter_count ≤ max_iter) and (error ≥ tolerance) do 

//Compute current error 

    //Check for convergence 

    If (current error < tolerance) then 

         Exit the loop 

    else 

//Update Parameters 

For each parameter (a, b, p, q) do 

//Compute current error using the previously defined  

error function 

//Update the parameter based on the gradient and α: 

a←a−α*gradient(a) 

b←b−α*gradient(b) 

p←p−α*gradient(p) 

q←q−α*gradient(q) 

end 

//Handle learning rate α adjustment  

//Increment iter_count 

If (current error > previous error) then 

Reduce learning rate α 

Update previous error 

end 

end 

end 

Return the optimized parameters a, b, p, q 

IV.    PROPOSED APPROACH 

Access to private data is critical, making CNN 

vulnerable to attack. However, we propose a method for 

securing the model that consists of modifying the 

activation function without causing a malfunction of the 

neuron’s internal activity [32]. To improve the accuracy of 

classification by a CNN network on data encrypted using 

HE homomorphic encryption, we approximated the ReLU 

activation function by a polynomial using the Beta 

function, and for the Sigmoid and Tanh activation 

functions, we used the Beta primitive to approximate them. 

The various steps are illustrated in Fig. 2. 

 

Fig. 2. CNN using Beta activation functions approximations on homomorphic encryption. 
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Neural networks require the use of an activation 

function at the output of each neuron [15]. As a first step, 

we propose to develop a new low-degree polynomial to be 

applied to the different convolutional layers of the CNN 

network [16−18]. As this polynomial is unknown, so it will 

be difficult to attack the network. 

Our approach is based on the use of the Beta function 

Eq. (4) and its corresponding primitive Eq. (5). These 

functions can be parametrically tuned, allowing their 

parameters (a, b, p, q) to be modified to obtain the most 

optimal approximation in each case.  

By adjusting the parameter values, we achieve optimal 

approximations for each activation function. The 

approximation expressions for each activation function, 

based on the optimal values of the adjusted parameters, 

along with the resulting approximation polynomials, are 

presented below. 

1) Approximation of the ReLU activation function  

The expression for the approximation of the ReLU 

activation function with the Beta function is given by the 

following expression: 

         0.74  Beta (
(𝑥−0.99)

6.8
).                     (6) 

The optimal values of the parameters:  

 

(a, b, c) = (−0.7, −5, −3.57), 

(p, q) = (1, 2). 

The mathematical expression of the approximation 

polynomial (Polynomial 1) of the ReLU activation 

function with the Beta function, obtained by developing 

Eq. (6) according to the parameters previously introduced, 

is represented by Eq. (7) below: 

 

Polynomial 1 

 

−

2510000(−
5(𝑥−

99
100)

34
−5)

2



(
5(𝑥−

99
100)

34
−

9

10
)

1819961
                      (7) 

 
 

The approximation of the ReLU activation function 

based on the Beta function according to Polynomial 1 is 

illustrated in Fig. 3. 

 

 

Fig. 3. Polynomial approximation of the ReLU activation function using Polynomial 1 (Eq. (7)). 

2) Approximation of the Sigmoid activation function  

To approximate the Sigmoid activation functions, we 

relied on the primitive of the Beta function. The 

approximation expression with the primitive of the Beta 

function is given by the following expression: 

0.5 +1.125  Primitive_Beta (0.6x)         (8)   

The optimal values of the parameters:  

(a, b, c) = (−0.9, 0.9, 0), 

(p, q) = (2, 2). 

The mathematical expression of the approximation 

polynomial (Polynomial 2) of the Sigmoid activation 

function with the primitive of the Beta function, obtained 

by developing Eq. (8) according to the parameters 

previously introduced, is represented by Eq. (9) below: 

Polynomial 2 

 

67  (
125𝑥5

64
 − 

675𝑥3

8
 + 

6561𝑥

4
)

437400
+

1

2
                    (9) 

 

The approximation of the Sigmoid activation function 

based on the primitive of the Beta function according to 

Polynomial 2 is illustrated in Fig. 4. 
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Fig. 4. Polynomial approximation of the Sigmoid activation function using Polynomial 2 (Eq. (9)). 

3) Approximation of the Tanh activation function  

We use the primitive of the Beta function to 

approximate the Tanh activation function. The 

approximation expression with the primitive of the Beta 

function is given by the following expression:  

1.5  Primitive_Beta (0.6x).               (10) 

The optimal values of the parameters:  

(a, b, c) = (−0.9, 0.9, 0), 

(p, q) = (2, 2). 

The mathematical expression of the approximation 

polynomial (Polynomial 3) of the Sigmoid activation 

function with the primitive of the Beta function, obtained 

by developing Eq. (10) according to the parameters 

previously introduced, is represented by Eq. (11) below: 

 

 

 

Polynomial 3 
125𝑥5

64
 − 

675𝑥3

8
 +

 6561𝑥

4

4374
                     (11) 

 

Polynomial 3 represents the function of the 

approximation obtained and Fig. 5 shows the shape of the 

curve. 

In this paper, we first use the polynomials obtained as 

activation functions in the proposed model. The activation 

functions ReLU, Sigmoid, and Tanh are replaced by the 

polynomials given by Eqs. (7), (10) and (11), respectively. 

Secondly, the addition of batch normalization between the 

CNN layers improves the efficiency and performance of 

the network. This Batch Normalization (BN) was used to 

ensure that the data fell within the defined range. 

The new model was then trained on an encrypted 

training set using homomorphic encryption. Finally, we 

evaluate our method using the Mnist and Cifar 10 datasets, 

two datasets frequently used in deep learning. 

 
Fig. 5. Polynomial approximation of the Tanh activation function using Polynomial 3 (Eq. (11)). 
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V.  EXPERIMENTAL RESULTS 

We have conducted experiments on the Mnist [33] and 

Cifar-10 [34] datasets. Mnist is a collection of 60,000 

images depicting handwritten digits. Each image is 

represented as a 2828 pixel array, where the gray level of 

each pixel ranges from 0 to 255. In our study, we utilized 

the training portion of the Mnist dataset, which consists of 

50,000 images, to train a neural network. The remaining 

10,000 images were employed for testing purposes. The 

Cifar-10 dataset comprises 60,000 images, with 50,000 

images designated for training and 10,000 for testing. Each 

image in the Cifar-10 dataset is an RGB image consisting 

of 3×32×32 pixels. Additionally, each image is assigned a 

label corresponding to one of ten classes. 

A first comparison is made using our proposed CNN 

model architecture. This comparison is made using the 

original activation functions on the one hand, and the 

approximation polynomials proposed using our approach 

on the other. The results of the evaluation of Mnist are 

presented in Table I. 

TABLE I. PERFORMANCE OF THE PROPOSED CNN USING ACTIVATION 

FUNCTIONS AND THEIR POLYNOMIAL APPROXIMATIONS USING THE 

MNIST DATASET 

Activation 

function 

Original 

Model 

Model with Our 

Approach (MNIST) 

ReLU 98.48% 98.86% 

Sigmoid 98.67% 98.78% 

Tanh 98.01% 97.76% 

 

We examined the impact of polynomial approximations 

of activation functions on the MNIST dataset. We 

observed that the polynomial approximation of the ReLU 

activation function, obtained from the beta function, 

produced the best results when integrated into the layers of 

our proposed architecture. These results indicate that this 

combination offers a significant performance 

improvement on MNIST. In addition, the use of the 

polynomial approximation of the Sigmoid activation 

function, based on the beta primitive, also led to a slight 

improvement in performance.  However, the performance 

of the polynomial approximation of the Tanh activation 

function, also derived from the beta primitive, was slightly 

lower. 

To further test our approach, another evaluation was 

carried out on the Cifar-10 dataset. The results are 

presented in Table II. 

TABLE II. PERFORMANCE OF THE PROPOSED CNN USING ACTIVATION 

FUNCTIONS AND THEIR POLYNOMIAL APPROXIMATIONS USING THE 

CIFAR-10 DATASET 

Activation 

function 

Original 

Model 

Model with Our Approach 

(Cifar 10) 

ReLU 97.87% 97.94% 

Sigmoid 96.32% 96.13% 

Tanh 95.22% 93.06% 

 

Using Cifar10, we find that the approximation 

polynomials for the ReLU and Sigmoid activation 

functions obtained perform better when used in the layers 

of the CNN architecture we propose. Whereas, the 

approximation polynomial for the Tanh activation function 

performs worse. 

In the experimental part, we use the Mnist and Cifar-10 

datasets encrypted by homomorphic encryption to evaluate 

the new model, and the results indicate that the 

classification accuracy of the encrypted Mnist dataset is 

better than that of the Cifar-10 dataset. The results show 

that the classification accuracy of the Mnist dataset can 

reach 98.86% for the ReLU function, which is interesting 

because the use of unknown polynomials is an important 

aspect of the security and protection of machine learning 

models. The experimental results demonstrate the merits 

of the approach, which preserves privacy in predictions. 

To better assess the effectiveness of our approach, a 

second comparison was carried out. Table III presents the 

results of the comparison between the results presented in 

the literature and our own. The polynomials presented 

concern the approximation of the ReLU function on the 

Mnist dataset, each using its polynomial [35, 36]. The 

values obtained are given in Table III. 

Table III shows the different results obtained for the 

Mnist dataset using different approaches. At the end of the 

evaluation, we obtained a classification accuracy of 

98.86%, which is very close to the CryproDL (99.52%) 

and CryptoNets (98.95%) approaches. On the other hand, 

our accuracy is better than the three methods [19] 

(98.82%), [37] (93.40%) and [38] (98.44%). 

TABLE III. COMPARISON OF THE EFFECTIVENESS OF OUR APPROACH 

WITH OTHER METHODS PROPOSED USING THE MNIST DATA SET AND 

POLYNOMIAL APPROXIMATIONS OF THE RELATED ACTIVATION 

FUNCTION 

Proposed method Accuracy 

CryptoDL [1] 99.52% 

CryptoNets [3] 98.95% 

Ishiyama et al. [19] 98.82% 

SecureML [39] 93.40% 

Ana et al. [40] 98.44% 

Our approach 98.86% 

TABLE IV. THE APPROXIMATION POLYNOMIALS OBTAINED BY 

SEVERAL POINTS EQUAL TO 5 AND IN THE RANGE [−2, 2] 

Activation 

function 

Polynomial approximations using 

Lagrange interpolation 

ReLU 
−0.083333333333333x4

+  0.583333333333333x2 +  0.5x 

Sigmoid 

                        0.000021764439479x4 
−0.013605563373428x3

+     0.000043182201679x2

+   0.244733041370182x +  0.5 

Tanh 

 0.000396751423111x4  
− 0.094230782415271x3   
− 0.001587005692445x2

+ 0.858936919698991x 

 

To further test our approach, a third comparison is 

carried out. We approximate the ReLU, Sigmoid, and Tanh 

activation functions using Lagrange  

interpolations [33, 34] and then compare the results 

obtained with the polynomials we have already proposed. 

The approximation polynomials obtained with several 

points equal to 5 and in the interval [−2, 2] are presented 

in Table IV. 
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Fig. 6(a)−(c) shows successively the ReLU, Sigmoid, 

and Tanh activation functions and their polynomial 

approximations of our approach, as well as the 

approximations obtained by Lagrange interpolation in the 

interval [−2, 2]. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 6. The ReLU, Sigmoid, and Tanh activation functions and their polynomial approximations, (a) Our proposed polynomial approximation 

(Polynomial 1) and the Lagrange interpolation approximation of the ReLU activation function, (b) Our proposed polynomial approximation (Polynomial 

2) and the Lagrange interpolation approximation of the Sigmoid activation function, (c) Our proposed polynomial approximation (Polynomial 3) and 

the Lagrange interpolation approximation of the Tanh activation function. 
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We implement the proposed new model by changing, 

each time, the ReLU, Sigmoid, and Tanh activation 

functions by polynomial approximations obtained using 

Lagrange interpolation. The comparison is made using the 

mnist dataset (Table V). 

TABLE V. THE CNN’S PERFORMANCE USING A POLYNOMIAL 

APPROXIMATION WITH LAGRANGE INTERPOLATION OF THE ACTIVATION 

FUNCTIONS ON MNIST DATA SET 

Activation 

Function 

Approximation 

Lagrange 

Model with 

Our approach 

ReLU 98.18% 98.86% 

Sigmoid 97.85% 98.78% 

Tanh 97.92% 97.76% 

 

On the Mnist dataset, we find that the ReLUactivation 

function approximation polynomial, obtained using the 

Beta function, gives the best results when used in the layers 

of our proposed architecture. On the other hand, the 

approximation polynomial of the Sigmoid activation 

function obtained using the Beta primitive, slightly 

improves performance compared to the polynomial 

obtained by approximation using Lagrange interpolation. 

For the polynomial approximating the Tanh function, also 

obtained using the Beta primitive, performance is slightly 

lower. 

VI.  CONCLUSION AND FUTURE WORK 

In this article, we proposed a new strategy to enhance 

the privacy and security of data in neural networks. We 

introduced innovative approaches to approximate the 

ReLU activation function using the Beta function and its 

primitive for Sigmoid and Tanh approximations. This 

method offers increased flexibility due to the 

parametrizability of the Beta function, allowing for better 

approximation and making the model more resilient to 

attacks. Concurrently, we optimized the model’s 

performance by adding additional layers of batch 

normalization in a CNN. The utilization of the 

homomorphic encryption algorithm on encrypted data was 

also implemented to reinforce the confidentiality of 

processed information. To evaluate our approach, we 

utilized the Mnist and Cifar 10 databases, demonstrating 

that our method yields accurate, precise, and scalable 

predictions. The experimental results validate the merits of 

our approach. By combining the use of unknown 

polynomials with the flexibility of the Beta function, we 

significantly reduce the likelihood of attacks and enhance 

model confidentiality. Integrating these unknown 

polynomial approximations into activation functions adds 

an extra layer of security, particularly crucial in sensitive 

domains where data protection is paramount. In conclusion, 

our approach not only improves model performance but 

also strengthens security by providing additional defense 

against attacks. The flexibility of the Beta function used as 

an approximation base allows for precise adaptation, 

constituting a major asset for achieving maximal 

approximation. 

For future work, a deeper exploration of the possibilities 

offered by the Beta function in approximating activation 

functions could be pursued. Additionally, investigating the 

impact of different normalization and encryption methods 

on model performance and security would be worthwhile. 

Moreover, extending this approach to other types of neural 

networks and more complex datasets could open up new 

avenues in the field of data protection and privacy in 

machine learning. 
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