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Abstract—Examining and potentially adjusting one’s 

cognitive processes in response to dissatisfaction with one’s 

performance is a fundamental aspect of intelligence. 

Remarkably, such sophisticated abstract concepts necessary 

for achieving Artificial General Intelligence can be effectively 

incorporated into basic Machine Learning algorithms. In this 

study, we introduce a method for replicating self-awareness 

through a supervisory Artificial Neural Network (ANN), 

which monitors patterns in the activation functions of an 

underlying ANN to identify signs of substantial uncertainty 

within the underlying ANN and, consequently, the reliability 

of its predictions. The underlying ANN in this context is a 

Convolutional Neural Network (CNN) ensemble primarily 

utilized for tasks related to facial recognition and facial 

expression analysis. We evaluate the performance of the 

supervisory ANNs using various activation functions as they 

learn to gauge the dependability of predictions made by the 

Inception v3 CNN ensemble. To conduct computational 

experiments, we employ a facial data set that incorporates 

makeup and occlusion factors. These experiments are 

designed to mimic real-world conditions where the training 

data set exclusively consists of images without makeup or 

occlusion, while the test data set comprises images featuring 

makeup and occlusion. This partitioning ensures the model is 

tested under challenging out-of-training data distribution 

scenarios.  

 

Keywords—meta-learning, trustworthiness, uncertainty 

estimation, face recognition, occlusions  

 

I. INTRODUCTION 

The terminology Artificial Intelligence (AI) often 

encompasses a broad spectrum of concepts, ranging from 

rudimentary software implementations of mathematical 

principles like multi-dimensional regression to more 

advanced systems that approach human-like capabilities. 

When discussing AI within the context of human-like 

attributes, there exists an opportunity to explore the 

potential for learning from simple and specialized Machine 

Learning (ML) algorithms, considering them as 

fundamental components and practical approximations of 
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human-like intelligence [1]. In this research, we aim to 

delve into a specific facet of human-like intelligence, 

namely, the capacity for awareness of one’s own 

predictions’ uncertainty. 

Post-factum accuracy metrics is a good measure for the 

general ML models’ performance; however, at the 

particular moment of the prediction, the estimate of the 

uncertainty and trustworthiness of the prediction before its 

verification is a piece of important information, especially 

for the mission-critical applications. 

To bridge the gap between overarching theoretical 

considerations and practical applications, our focus on the 

development of a meta-learning [2] supervisor Artificial 

Neural Network (ANN) model, which is designed to 

discern and internalize softmax distribution uncertainty 

patterns within the functionality of the underlying 

Convolutional Neural Network (CNN) models, 

particularly concerning instances of failed and successful 

predictions in the context of Face Recognition (FR) tasks. 

The learning process entails self-adjustment of the 

trustworthiness threshold based on prior experiences 

during both the training and testing phases. In such a way, 

closing a gap of practical solutions for arbitrary 

classification ANN to learn not only expected uncertainty 

of its prediction, but also trustworthiness of the verdict 

based on uncertainty estimation.  

Consequently, the application of continuous uncertainty 

and trustworthiness self-awareness algorithms to FR 

models, using datasets meticulously constructed and 

partitioned to exaggerate and intensify Out of Data 

Distribution (OOD) conditions, serves as a valuable arena 

for the assessment and evaluation of these algorithms. 

The paper is organized as follows. Section II briefs on 

the existing research literature. Section III suggests a 

solution to dynamically adjust the meta-learning 

trustworthiness estimating algorithm for predicting FR 

tasks. This section also describes the dataset used for 

experiments and provides detailed information on the 

experimental algorithms. In Section IV, the obtained 

results are presented and discussed. Section V draws 
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practical conclusions and highlights areas for further 

research. 

II. LITERATURE REVIEW 

Among the methods used for estimation of the 

uncertainty and trustworthiness of the prediction before its 

“ground truth’’ verification, Bayesian [3, 4] and other 

probabilistic approaches to uncertainty quantification [5] 

are used; still, their results depend on the beforehand 

assumptions, which may not be parametric in real life. 

Thus, it’s not only desirable to get not only a point-

estimate prediction (belief), and not only a range and 

distribution of prediction (uncertainty), but also a 

trustworthiness estimate of that range prediction. External 

analysis of ANNs using subjective probabilistic logic [6] 

to formulate an opinion on the ANN’s trustworthiness is 

proposed in [7]. However, analysis of the entire ANN 

topology sets practical limits for the methodology. A more 

practical ANN uncertainty classification model of the 

external monitoring of the original ANN softmax 

distribution by another ANN is proposed in [8]. The 

uncertainty classification training in this model is done by 

the associated accuracy association. Thus, at the prediction 

step, an accuracy estimate, based on the observed 

uncertainty, is generated. 

The rationale behind selecting the FR task as our 

domain of study stems from a pertinent observation. While 

State of the Art (SOTA) CNN models achieved human-

level accuracy in face recognition under ideal laboratory 

conditions about a decade ago [9–11], they face substantial 

accuracy degradation when confronted with OOD 

scenarios [12], such as those involving makeup and 

occlusions [13, 14]. Therefore, ability not only detect OOD 

condition of the input image, or in general piece of data, 

but also predict atypical uncertainty of the ANN state, and 

therefore its confusion and untrustworthy verdict is a 

highly desirable functionality of the mission-critical 

applications, yet is still underdeveloped area. 

III. MATERIALS AND METHODS 

A. Proposed Solution 

In Ref. [15], the use of the meta-learning Supervisor 

ANN (SANN) was proposed to monitor patterns of the 

softmax activations of the CNNs performing FR task. The 

Spiking Neural Network (SNN) learns patterns specific for 

correct and wrong classifications during the training phase, 

and then this pattern detection is used for predicting the 

trustworthiness of the verdicts of the underlying CNN 

ensemble’s classification. 

The following text describes the process of utilizing the 

whole set of softmax activations for all Face Recognition 

(FR) classes of all Convolutional Neural Networks 

(CNNs) as an input for a meta-learning Spiking Neural 

Network (SNN) to generate a trusted or not-trusted flag. 

The process involves creating a class-invariant 

generalization, called the “Uncertainty Shape Descriptor” 

(USD), by sorting softmax activations inside each model 

vector, ordering model vectors by the highest softmax 

activation, flattening the list of vectors, and rearranging the 

order of activations in each vector to the order of 

activations in the vector with the highest softmax 

activation. The algorithm description can be found in detail 

in [16]. The resulting USD is then used to perform a 

pattern recognition task by the meta-learning SNN. 

Examples of the USD for the cap M equals 7 CNN 

models in the underlying FR or Facial Expression 

Recognition (FER) ensemble are presented in Fig. 1(a)–(c). 

These examples demonstrate that the shapes of the 

distribution of the softmax activations are distinct and, 

therefore, can be used for the pattern recognition task 

performed by the meta-learning SNN, even when none of 

the models detected the face correctly. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 1. Uncertainty shape descriptors for (a) 0 correct out of 7-member, 

(b) 4 correct out of 7-member, (c) 7 correct out of 7-member CNN 

ensemble for FR. 

To allow trustworthy threshold learning, instead of 

simple binary classification, SNN is performing a 

regression task, predicting the number of the CNN models 

in the underlying ensemble which would vote for the 

majority candidate classification. The high number of such 

models would mean higher trustworthiness of the CNNs 

verdict, and the lower number would mean low 

trustworthiness. The exact threshold number could be 

learned either during the training phase or updated during 

the test runs as a part of continuous learning. 
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On the high level, the transformation can be seen as 

Eq. (1), where 𝑛 =  |𝐶| × 𝑀 is the dimensionality of the 

∀𝑈𝑆𝐷⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ∈ 𝒳 , |𝐶| : cardinality of the set of FR or FER 

categories (subjects or emotions), and 𝑀: size of the CNN 

ensemble Fig. 2. 

 

 

Fig. 2. Meta-learning supervisor ANN over underlying CNN ensemble. 

 𝑟𝑒𝑔:𝒳 ⊂  𝑅𝑛  ↦  𝒴 ⊂  𝑅  (1) 

where ∀�⃗� ∈ 𝒳 , 𝑥 ∈ (0…1)𝑛  , ∀𝑦 ∈ 𝒴 , 𝐸(𝑦) ∈ [0,… ,𝑀], 
𝑥  is an input vector of the USD composed from the softmax 

activations of the underlying CNN ensemble and y is an 

output scalar predicting expected number of the correct 

verdicts of the CNN ensemble. 

The reg meta-learning SNN transformation, represented 

in Eq. (1), is implemented with two hidden layers with 𝑛 +
1  and 2𝑛 + 1  neurons in the first and second hidden 

layers [17]. 

The reason for such a choice is that the general ML 

problem formulation is quite close to Hilbert’s 13th 

mathematical problem of the coming centuries [18], which 

could be formulated in a loose general way as: for each 

algebraic (or continuous in a later formulation) function 

𝑓:𝒳 ⊂ 𝑅𝑚 ↦ 𝑅  from the real domain space of 

dimensionality 𝑚  to the real scalar range, there exists 

superposition of the finite number 𝑘 of functions ϕ𝑖: 𝒴𝒾 ⊂
𝑅𝑛𝑖 ↦ 𝑅 such that 𝑓(𝑥 ) = ∑ ϕ𝑖(𝑦 𝑖)

𝑘
𝑖=1 , where 𝒴𝒾  are 

subspaces of dimensionality 𝑛𝑖  of 𝒳:∀𝒴𝒾 ⊂ 𝒳,  𝑚 ≥
𝑛𝑖 ≥ 3 [19]. 

Kolmogorov [20] solved the problem for 𝑛 ≥ 3, and 

then his student V. Arnold extended the solution to 𝑛 ≥ 2 

in the following form: 

 

𝑓(𝑥 ) = 𝑓(𝑥1, … , 𝑥𝑚) = ∑ Φ𝑞(∑ 𝜙𝑞𝑝(𝑥𝑝)
𝑚
𝑝=1 )2𝑚

𝑞=0   (2) 

 

where Φ𝑞 and ϕ𝑞𝑝 are continuous 𝑅 ↦ 𝑅 functions. 

The Kolmogorov-Arnold superposition theorem can be 

thought of as a representation of a 2-layer Artificial Neural 

Network (ANN). The inputs to the inner functions ϕ𝑞𝑝 can 

be seen as local perception fields of various scales. 

Dimension-specific non-linearities are built into the 

perceptrons, or placed before them on the input channels. 

However, the practicality of such an ANN as a Universal 

Approximator has been disputed in [21] due to the non-

smoothness of the inner ϕ𝑞𝑝  functions. These objections 

were rebutted in [22]. In Ref. [23], the ϕ𝑞𝑝  activation 

functions are even called “pathological”. 

However, activation functions, traditionally used in 

ANN and especially in DL architectures relying on 

multiple differentiable monotone transformations, are not 

designed to be “pathological”. Therefore, the 

Approximator ANN based on these activations should be 

far from ideal; nevertheless, it is possible to find the best 

candidates from the traditional and novel assortment of the 

ready-to-use, and “exotic” experimental activations to be 

used in the proposed SNN architecture. 

Another consideration for the better activation function 

search is their resilience to catastrophic forgetting [24, 25] 

and loss of plasticity in the case of continuous 

learning [26]. Recent research hints at a better 

performance in that sense of more “exotic” variations of 

the traditional activation functions [27]. 

Therefore, to determine activation functions suitable 

better for the trustworthiness forecasting accuracy and 

continuous learning environment, experiments were 

conducted with ReLU (rectified linear unit) depicted in 

Fig. 1, Tanh (hyperbolic tangent), Sigmoid, GeLU 

(Gaussian linear unit) [28], LrReLU (Learning ReLU. in 

which the activation slope is a learnable value, specific for 

each neuron), and CReLU (Concatenating ReLU) [29] 

activation functions to find the best one for the task. 

Accuracy metrics of SNNs with different activation 

functions are compared in this study. All source code and 

detailed results are publicly available on GitHub 

(https://github.com/Selitskiy/StatLoss). 

The loss function used for prediction 𝑦 consists of two 

components. The first one is the usual for regression tasks, 

sum of squared error: 𝑆𝑆𝐸𝑦 = ∑ (𝑦𝑗 − 𝑒𝑗)
2𝑁𝑚𝑏

𝑗=1 , where 𝑒 is 

the label (actual number of the members of CNN ensemble 

with correct prediction), and 𝑁𝑚𝑏: minibatch size.  

In the second loss function, statistical information from 

previous training results is utilized to configure the 

trustworthiness threshold 𝑇𝑇  in the Loss Layer (LL) 

memory of the SNN [30]. The LL memory stores various 

information including the prediction result 𝑦𝑡 , training 

label result 𝑙𝑡,, and the learnable trustworthiness threshold 

𝑇𝑇. The derivative of the loss error is calculated from these 

statistical data to auto-configure the TT and optimize the 

sum of square errors loss 𝑆𝑆𝐸𝑇𝑇 = ∑ 𝑆𝐸𝑡
𝐾
𝑡=1 , where 𝐾 

represents the number of entries for moments in time t in 

the memory table: 

𝑆𝐸𝑇𝑇𝑡 = (𝑦𝑡 − 𝑇𝑇)2, 𝑖𝑓  (𝑙𝑡   <  𝑇𝑇  ∧   𝑦𝑡 >  𝑇𝑇)  ∨
   (𝑙𝑡   >  𝑇𝑇  ∧   𝑦𝑡   <  𝑇𝑇)                (3) 

𝑆𝐸𝑇𝑇𝑡 = 0, 𝑖𝑓  (𝑙𝑡   >  𝑇𝑇  ∧   𝑦𝑡   >  𝑇𝑇)  ∨   (𝑙𝑡   <  𝑇𝑇  ∧
  𝑦𝑡   <  𝑇𝑇)  

where ∧ is a logical AND and ∨ is a logical OR operators.  

The combined CNN ensemble and meta-learning 

supervisor ANN can be represented as Eq. (4) from the 
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perspective of trustworthiness categorization and 

ensemble vote: 

 𝑐𝑎𝑡: ℐ ⊂ 𝐼𝑙 ↦ 𝒞 × ℬ ⊂ 𝐶 × 𝐵  (4) 

where 𝑖  are images in the l-dimensional integer subspace 

of 𝐼𝑙 , 𝑙 : image size, 𝑐 : classifications in the category 

subspace of 𝐶 , and 𝑏  - binary trustworthy flags in the 

binary subspace of 𝐵 , such as ∀𝑖 ∈ ℐ , 𝑖 ∈
(0, … ,255)𝑙  , ∀𝑐 ∈ 𝒞 , 𝑐 ∈ {𝑐1, … , 𝑐|𝐶|} , ∀𝑏 ∈ ℬ , 𝑏 ∈ {1,0} 

such that: 

 𝑏𝑖 = 1, 𝑖𝑓 (𝑦𝑖 > 𝑇𝑇𝑡)  (5) 

 𝑏𝑖 = 0, 𝑖𝑓 (𝑦𝑖 < 𝑇𝑇𝑡)   

where the variable 𝑖 represents the index of the image at 

the current moment 𝑡 within the state of the loss function 

memory. 

 𝑐𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛(|𝑦𝑖 − 𝑒𝑖(𝑐𝑖)|)  (6) 

Eq. (6) above describe the ensemble vote that chooses 

category 𝑐𝑖, which received the closest number of votes 𝑒𝑖 

to the predicted regression number 𝑦𝑖.  

The equations presented above explain how the 

ensemble vote selects the category 𝑐𝑖, that has the closest 

number of votes 𝑒𝑖  to the predicted regression number 𝑦𝑖. 

B. Data Set 

The BookClub dataset, Fig. 3, for artistic makeup 

comprises images of 21 subjects denoted by the cardinality 

of the set, i.e., E = |C| = 21. For each subject, the dataset 

includes a series of photos taken during a photo session 

with no makeup, various makeup, or other facial 

obstructions such as wigs, glasses, jewellery, masks, or 

headdresses. The dataset consists of 37 photo sessions 

without makeup or occlusions, 40 sessions with makeup, 

and 17 sessions with occlusions. Each photo session 

includes around 168 JPEG images of six primary 

emotional expressions (sadness, happiness, surprise, fear, 

anger, and disgust), one neutral expression, and closed-eye 

shots taken from seven head rotations at three different 

exposure times on an off-white background. The age of the 

subjects ranges from their twenties to their sixties, and the 

majority of subjects are Caucasian, with some Asian 

representation. Gender is fairly evenly distributed across 

the sessions. 

The images available for download at 

https://data.mendeley.com/datasets/yfx9h649wz/3 were 

captured over a period of two months, featuring several 

individuals who posed for the camera during multiple 

sessions over a span of several weeks. The subjects were 

photographed wearing different outfits and sporting 

various hairstyles. It should be noted that all individuals 

featured in the photos provided their consent for their 

anonymous images to be utilized in public scientific 

research. 

 

 

Fig. 3. BookClub data set examples. 

The makeup design and application also varied in the 

artists’ skills, style and heaviness of the pigments and face 

area covering percentage. Makeup artists of three levels 

volunteered their work for the project: mature, semi-

professional, and professional. As for the pigment 

materials, professional artistic and theatrical pigments of 

Mehron, Inc. production were used in experiments. For 

occlusions, typical everyday items, likely to be found in 

households and on the streets, were used. 

This dataset is valuable for training and verifying CNN 

against makeup and occlusion recognition avoidance. 

When non-makeup-only photo sessions are added to the 

training set and makeup and occlusion sessions are used 

for testing, it becomes well-suited for benchmarking 

uncertainty estimation for real-life OOD conditions where 

test data isn’t well-represented by the training data. The 

dataset’s wide range of lighting conditions, head 

orientations, emotional expressions, age, gender, and race 

makes it an excellent source of data for aleatoric 

uncertainty training. 

In FR experiments, the dataset was divided into subject, 

makeup, and time-centered photo sessions. Only images 

without makeup and occlusions were selected for the 

training subsets, while for the test subset, only makeup and 

occluded sessions (with 11,125 images) were used. The 

training subsets consist of two parts: one for CNN 

ensemble training (4,508 images), and the other for meta-

learning supervisor ANN training (1,653 images). 

C. Experiment Setup 

The experiments were conducted on a Linux operating 

system running Ubuntu 20.04.3 LTS. The system 

specifications include QuadroPro RTX 8000 with 48 GB 

GDDR5 memory, X299 chipset motherboard, 256 GB 

DDR4 RAM, and i9-10900X CPU. MATLAB 2023b with 

Deep Learning Toolbox was used to run the experiments. 

For statistical analysis, R 4.2.1 implementations were used 

with default parameters unless mentioned otherwise. 

In the experiments related to Face Recognition (FR), the 

Inception v3 CNN model was used. Out of various State-

of-the-Art (SOTA) models applied to FR and FER tasks on 

the BookClub dataset, such as AlexNet, GoogLeNet, 

ResNet50, InceptionResnet v2, the Inception v3 model 

showed the best overall result over accuracy metrics like 
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trusted accuracy, precision, and recall [16]. Therefore, the 

Inception v3 model, which contains 315 elementary layers, 

was used as the underlying CNN. Its last two layers were 

resized to match the number of classes in the BookClub 

dataset (21), and re-trained using the “adam” learning 

algorithm with 0.001 initial learning coefficient, 

“piecewise” learning rate drop schedule with 5 iterations 

drop interval, and 0.9 drop coefficient, mini-batch size 128, 

and 10 epochs parameters to ensure at least 95% learning 

accuracy. The Inception v3 CNN model was used as part 

of the ensemble with seven models trained in parallel. 

Meta-learning SNN models were trained using the 

“adam” learning algorithm with 0.01 initial learning 

coefficient, mini-batch size 64, and 200 epochs. For online 

learning experiments, the batch size was set to 1, as each 

consecutive prediction was used to update meta-learning 

model parameters. The memory buffer length, which 

collects statistics about previous training iterations, was set 

to K = 8192. 

D. Trusted Accuracy Metrics 

While accuracy metrics, including measures like 

accuracy itself, precision, recall, and others, are defined in 

a clear-cut manner using parameters like true or false and 

negative or positive, the interpretation of these metrics can 

be inherently subjective or, at the very least, contingent 

upon the specific task at hand. Consider, for instance, an 

ANN trained for image class recognition. In this context, a 

prediction is deemed positive if it corresponds to the class 

with the highest softmax activation, but what constitutes a 

negative prediction? Is it any class with lower softmax 

activations, those with a softmax value of 0, or some 

intermediary criterion? In our problem formulation, a 

negative prediction is defined as one where the CNN 

provides a positive classification with a corresponding 

negative (non-trusted) flag from the SNN, and the 

determination of true or false hinges on the correctness of 

the prediction. 

Let us consider a scenario in which only the final 

classification verdict of the ANN model is employed as the 

ultimate outcome. When dealing with such scenarios, you 

can determine the accuracy of the target CNN model by 

calculating the proportion of correctly identified test 

images by the CNN model in relation to the total number 

of test images in the dataset. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃=𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡)+(𝑇𝑁=0)

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
=

𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑁𝑎𝑙𝑙
           (7) 

If we add an additional dimension to the classification 

process, such as modifying the verdict of the meta-learning 

supervisor ANN (see Eq. (4)), and  

let 𝑐𝑎𝑡(𝑖 ) = 𝑐 × 𝑏 , where ∀𝑖 ∈ ℐ,  ∀𝑐 × 𝑏 ∈ 𝒞 × ℬ =

{(𝑐1, 𝑏1), … (𝑐𝑝, 𝑏𝑝)},  ∀𝑏 ∈ 𝐵 = {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒},  then we 

can calculate the trusted accuracy and other trusted quality 

metrics: 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑡 =
𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡:𝑓=𝑇+𝑁𝑤𝑟𝑜𝑛𝑔:𝑓≠𝑇

𝑁𝑎𝑙𝑙
 (8) 

In more common terms, 𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡:𝑓=𝑇 can be referred to 

as the True Positive (TP) number, 𝑁𝑤𝑟𝑜𝑛𝑔:𝑓≠𝑇 : True 

Negative (TN), 𝑁𝑤𝑟𝑜𝑛𝑔:𝑓=𝑇 : False Positive (FP), and 

𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡:𝑓≠𝑇: False Negative (FN). 

Trusted precision, which is a measure of the “pollution” 

of the true positive verdicts by the false-positive errors, can 

be calculated as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑡 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
=

𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡:𝑓=𝑇

𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡:𝑓=𝑇 + 𝑁𝑤𝑟𝑜𝑛𝑔:𝑓=𝑇
     (9) 

Trusted recall, which is a measure of the “loss” of true 

positive verdicts due to false-negative errors: 

𝑅𝑒𝑐𝑎𝑙𝑙𝑡 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
=

𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡:𝑓=𝑇

𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡:𝑓=𝑇 + 𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡:𝑓≠𝑇
       (10) 

In another sense, trusted specificity can be defined as 

the extent of true-negative verdicts’ “loss” due to false-

positive errors. When it comes to A/B testing, this refers to 

the percentage of wrongly identified images that are 

correctly recognized, expressed in terms of the confidence 

level. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦𝑡 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
=

𝑁𝑤𝑟𝑜𝑛𝑔:𝑓≠𝑇

𝑁𝑤𝑟𝑜𝑛𝑔:𝑓≠𝑇 + 𝑁𝑤𝑟𝑜𝑛𝑔:𝑓=𝑇
    (11) 

where 𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡  and 𝑁𝑤𝑟𝑜𝑛𝑔  number of correctly and 

incorrectly identified test images by the CNN model. 

As well as the trusted F1-Score, the harmonic mean of 

trusted Precision and Recall: 

 𝐹1𝑡 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑡 × 𝑅𝑒𝑐𝑎𝑙𝑙𝑡

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑡 + 𝑅𝑒𝑐𝑎𝑙𝑙𝑡
  (12) 

IV. RESULT AND DISCUSSION 

Results of the trusted accuracy metrics, calculated by 

Eqs. (8)–(12), of FR experiments, are presented in Tables I 

and II, for maximal ensemble vote. Untrusted accuracy 

Eq. (7) for those experiments is 0.682369. 

TABLE I. TRUSTED ACCURACY METRICS FOR THE MAXIMAL ENSEMBLE 

VOTE FOR RELU, TANH, AND SIGMOID ACTIVATION FUNCTIONS OF SNN 

Metric 
Activation function 

ReLU (%) Tanh (%) Sigmoid (%) 

Accuracyt 75.10 74.13 74.02 

Precisiont 85.62 84.21 83.61 

Recallt 76.33 76.42 77.03 

F1-Scoret 80.71 80.13 80.19 

Specificityt 72.46 69.21 67.57 

TABLE II. TRUSTED ACCURACY METRICS FOR THE MAXIMAL ENSEMBLE 

VOTE FOR GELU, LRRELU, AND CRELU ACTIVATION FUNCTIONS OF 

SNN 

Metric 
Activation function 

GeLU (%) LrReLU (%) CReLU (%) 

Accuracyt 72.95 74.32 71.77 

Precisiont 84.34 84.97 83.09 

Recallt 74.12 75.77 73.61 

F1t-Score 78.90 80.12 78.06 

Specificityt 70.42 71.22 67.83 
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For the learned trustworthy threshold ensemble vote, the 

trusted accuracy metrics are presented in Tables III and IV, 

where untrusted accuracy is 0.590579.  

The first columns hold accuracy metrics, and other 

columns—values for ReLU, Tanh, Sigmoid, GeLU, 

LrReLU, and CReLU activation functions of SNN. 

TABLE III. TRUSTED ACCURACY METRICS FOR THE LEARNED 

TRUSTWORTHY THRESHOLD ENSEMBLE VOTE FOR RELU, TANH, AND 

SIGMOID ACTIVATION FUNCTIONS OF SNN 

Metric 
Activation function 

ReLU (%) Tanh (%) Sigmoid (%) 

Accuracyt 77.84 76.64 76.30 

Precisiont 83.65 82.21 81.76 

Recallt 77.65 77.15 77.07 

F1t-Score 80.54 79.60 79.35 

Specificityt 78.11 75.92 75.19 

TABLE IV. TRUSTED ACCURACY METRICS FOR THE LEARNED 

TRUSTWORTHY THRESHOLD ENSEMBLE VOTE FOR GELU, LRRELU, 

AND CRELU ACTIVATION FUNCTIONS OF SNN 

Metric 
Activation function 

GeLU (%) LrReLU (%) CReLU (%) 

Accuracyt 76.19 76.8057 74.1588 

Precisiont 82.78 83.40 81.07 

Recallt 75.36 75.81 73.38 

F1t-Score 78.89 79.43 77.03 

Specificityt 77.38 78.24 75.28 

  

In terms of the accuracy results in comparison between 

the proposed SNN solution and the topologically closest 

Accuracy Monitoring (AM) model [8], we can see 

comparable results: Accuracy Monitoring exhibited a high 

60’s–low 70’s%, while our SNN solution produced mid-

high 70’s percentage range. However, this is only a high-

level approximate comparison because the data sets used 

in both studies were different, as well as underlying CNNs, 

though ResNet-50 (AM) and Inception v3 (SNN) are 

similar in their performance and architecture. 

Though the AM model and SNN model basics happen 

to be similar: external shallow, 2-hidden layer ANNs 

monitoring the underlying CNNs’ softmax activations, 

there are important differences between them. Our SNN 

model learns the trustworthy threshold based on the 

softmax uncertainty distribution, while AM learns 

expected accuracy based on similar data. The SNN model 

uses a homogeneous ensemble to collect the softmax 

uncertainty distribution and uses an “uncertainty shape 

descriptor” algorithm to make the data class-generalized, 

while AM uses a heterogeneous implicit Bayesian dropout 

ensemble and raw class-specific data. We believe the 

above-mentioned makes our SNN model superior. 

The sheer size of the SNN model is significantly smaller 

than AM’s. Reducing SNN size and optimizing its 

performance was the principal objective of this study. The 

ANN based on the Kolmogorov-Arnold superposition 

theorem, allows to use minimal number of neurons for an 

underlying process estimation, given that volatile enough 

non-linearity activation functions are used. Comparison of 

various activation functions used in the study produced 

quite similar accuracy metrics results, which suggests that 

the task of trustworthiness estimation of the underlying 

CNN models for the being studied data set is smooth 

enough for the proposed 2-layer, ReLU activation function 

architecture.  

V. CONCLUSION 

The use of a CNN model ensemble based on Inception 

v3 architecture, along with a data set that includes 

significant Out-of-Distribution (OOD) samples in the form 

of makeup and occlusions, greatly benefits from the 

implementation of a meta-learning SNN. This SNN acts as 

a tool for self-awareness within the model, allowing it to 

better understand the uncertainty and reliability of its 

predictions. As a result, there is a significant increase in 

accuracy metrics for face recognition tasks, with 

improvements of tens of percentage points. 

Results for different ensemble voting schemas are small. 

Differences in accuracy metrics for different simple 

activation functions of the trustworthiness supervisor 

ANN are small, with the best results observed for ReLU. 

For future experiments, more sophisticated and volatile 

activation functions will be used for a more complex facial 

expression recognition task, as well as inferential statistics 

methods will be used to estimate the statistical significance 

of the observed differences. 
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