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Abstract—Medical image processing is revolutionizing 

Gastrointestinal (GI) cancer radiation therapy by enabling 

precise targeting of high X-ray beam dosages to the tumors 

while protecting the surrounding healthy organs. However, 

the manual segmentation of healthy organs at risk from MR-

Linac images is a time-consuming process that can delay 

treatment and increase patient suffering. Deep learning-

based medical image processing algorithms have the 

potential to automate the segmentation of organs at risk, 

thereby improving the accuracy and efficiency of GI cancer 

radiation therapy. Every day, the MR-Linac, a cutting-edge 

MRI technology, tracks the ever-changing positions of 

tumors. This advanced tool empowers medical professionals 

to fine-tune cancer treatments with remarkable precision. 

This study presents a TransUNet model, a combination of 

transformer architecture with Convolutional Neural 

Networks (CNNs). TransUNet achieves remarkable results in 

segmenting and labeling different regions within images by 

integrating the spatial comprehension of CNNs with the self-

attention mechanisms of transformers.  Our research 

compares the TransUNet model with various combinations of 

loss functions. The model outperforms with Dice+BCE loss 

function.   

 

Keywords—magnetic resonance imaging, TransUNet, 

gastrointestinal tract segmentation 

I. INTRODUCTION 

Millions of individuals are impacted by Gastrointestinal 

(GI) disorders each year, which constitute a major global 

health concern. As per the World Health Organization 

(WHO), gastrointestinal disorders are accountable for over 

1.5 million deaths annually and roughly 9% of the 

worldwide disease burden. The diagnosis and management 

of these conditions depend on the precise and trustworthy 

segmentation of the Gastrointestinal (GI) organs, 

including the stomach, large bowel, and small bowel. 

Medical professionals have manually segmented the GI 

system, which is a laborious procedure. Segmentation 

techniques that are automated are required to overcome 

these obstacles. Medical imaging is crucial in today’s 

healthcare for accurate diagnosis and treatment planning 

of a variety of diseases and conditions [1]. Magnetic 

Resonance Imaging (MRI) is one of the many imaging 
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modalities that stands out for its non-invasive capacity to 

offer comprehensive anatomical information Within the 

field of Gastroenterology, Magnetic Resonance Imaging 

(MRI) is a useful diagnostic tool that facilitates the 

visualization of the Gastrointestinal (GI) tract and the 

assessment of various diseases, including tumors and 

inflammatory bowel disease. For accurate diagnosis and 

treatment planning and segmentation, the process of 

separating and dividing anatomical structures or regions of 

interest within medical images is essential. The job of 

accurately segmenting the GI tract from MRI scans is 

difficult because of differences in picture quality, intricate 

anatomical structures, and a variety of diseases that might 

mask borders. Conventional machine learning approaches 

and handmade features are frequently used in 

segmentation techniques, which may not be able to 

adequately capture the complex spatial dependencies and 

minute details seen within the GI tract. However, by 

utilizing self-attention mechanisms to successfully capture 

long-range dependencies and contextual information, 

recent advances in deep learning particularly the triumph 

of transformer-based models have revolutionized several 

computer vision tasks.  

The main objective of this research is to explore the 

accuracy and reliability of GI tract segmentation in MRI 

images using transformer-based designs, which are widely 

recognized for their effectiveness in computer vision and 

natural language processing applications. We want to 

increase the precision, resilience, and effectiveness of GI 

tract segmentation in comparison to conventional 

techniques by utilizing the power of transformers, which 

are excellent at modeling intricate relationships in data 

sequences. The use of transformer-based models for GI 

tract segmentation in MRI images is thoroughly examined 

in this work.  To address the difficulties caused by the 

variation in GI tract appearance, we study how transformer 

topologies can be modified and improved to ensure correct 

segmentation. Additionally, our goal is to show off these 

models’ potential in clinical settings by offering 

dependable and accurate segmentation findings that 

support medical professionals in making diagnosis and 

treatment choices.  
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Our goal is to demonstrate the efficacy and potential of 

transformers in advancing medical image analysis, 

particularly in the context of GI tract segmentation from 

MRI images, through experimental evaluations and 

comparative analyses with cutting-edge segmentation 

techniques. Transformers have transformed medical 

picture segmentation by using self-attention processes to 

capture long-range dependencies, resulting in increased 

accuracy and efficiency in tasks such as organ 

segmentation and tumor identification. By fusing the 

advantages of both techniques, the integration of 

transformers with conventional methods improves their 

performance and makes them useful instruments for 

medical picture processing and diagnosis. Transformers 

can improve U-Net [2], which is well-known for its 

efficiency in segmenting structures with distinct 

boundaries. Transformers are a useful tool to supplement 

U-Net’s local feature capture capabilities by capturing 

long-range dependencies and global context. This 

combination increases the accuracy of segmentation, 

particularly when structures of interest have intricate 

shapes or diverse appearances. The model becomes a 

useful tool in medical image analysis by incorporating 

Transformers, which gives it the capacity to extract 

significant characteristics, model spatial relationships, and 

utilize contextual information.  

In the realm of medical image analysis, the pursuit of 

accurate segmentation has driven the development of 

novel models that leverage the strengths of both 

transformers and Convolutional Neural Networks (CNNs). 

One novel transformer model created for medical image 

segmentation problems is the Contoured Convolutional 

Transformer (CCT). It combines the benefits of 

transformers and Convolutional Neural Networks (CNNs) 

to improve segmentation accuracy. In CCT, transformers 

are used to capture global dependencies and context, while 

convolutional layers are utilised to extract local features. 
CCT can handle complicated structures and appearance 

variations in medical pictures with ease thanks to its hybrid 

architecture. CCT is a potential method for precise and 

effective analysis of medical pictures since it combines 

CNNs with transformers to deliver state-of-the-art 

performance in medical image segmentation. Another 

transformer model for accurate segmentation is HRViT, or 

High-Resolution Vision Transformer. It is built on the 

ResNet architecture [3]. It attempts to bring together the 

advantages of Vision Transformers’ long-range 

dependency modeling and ResNet’s robust feature 

extraction capabilities. HRViT can extract detailed 

features from high-resolution images and capture global 

context and dependencies by adding transformer layers 

into the ResNet backbone. Due to its hybrid architecture, 

HRViT is a good choice for tasks like high-resolution 

image classification or segmentation that call for both 

global context modeling and fine-grained feature 

extraction. To improve its capacity for comprehensive 

feature extraction and long-range dependency modeling in 

image tasks, HRviT, which is built on HardNet, combines 

the high-resolution feature extraction capabilities of 

HardNet with the global context modeling of Vision 

Transformers. Tasks like dense image matching and 

retrieval, where both fine-grained characteristics and 

global context are critical, benefit greatly from this hybrid 

architecture. 

 Four sections make up the remaining portion of the 

paper: A summary of pertinent literature is provided in 

Section II. Our techniques for creating and applying the 

models are covered in Section III. Our experiment and the 

findings of a comparison between models are covered in 

Section IV. Finally, Section V offers suggestions for more 

research. 

II. LITERATURE REVIEW 

In recent years, transformers have emerged as a 

transformative force in various fields, revolutionizing 

natural language processing, computer vision, and beyond. 

Nowadays transformers have been used in medical image 

segmentation. This section explores the usage of 

transformers in medical image segmentation. 

Transformers are used in many ways and they are 

combined with different models like U-Net. Khan et al. [4] 

have presented a comprehensive summary of transformer-

based models across various medical imaging 

applications, encompassing tasks such as segmentation, 

detection, classification, reconstruction, synthesis, 

registration, and the generation of clinical reports. They 

analyzed the combination of CNNs and transformers in 

segmentation that allows for the capture of both local and 

global features in the input image, which can improve 

segmentation accuracy. Gao et al. [5] have introduced a 

hybrid transformer architecture called UTNet is used to 

segment medical images. It improves medical image 

segmentation by incorporating self-attention into a 

convolutional neural network. The network can capture 

long-range dependencies at various scales with minimum 

overhead owing to the self-attention method. Karimi and 

Vasylechko et al. [6] have suggested a network for 

convolution-free medical image segmentation.  A novel 

approach to 3D medical image segmentation has been 

introduced. This model relies on self-attention between 

nearby 3D patches, in contrast to all other contemporary 

models that use convolution as their primary building 

component. 

Wang et al. [7] have developed a model with Contoured 

Convolutional Transformer Network (CCTrans). The U-

shaped structure used in this architecture is made up of 

skip connections, a decoder, and an encoder. The gated 

module consists of Batch Normalization (BN), 

convolution, ReLU, and sigmoid layers, all of which were 

inspired by ResNet. In clinics, the CCTrans network is 

utilized to help physicians accelerate organ segmentation 

activities and enhance diagnostic effectiveness. He et al. [8] 

have proposed a High-Resolution Vision Transformer 

(HRViT) based on HRNet. The CFNet network leads 

cross-scale fusion features to efficiently connect to 

decoder features to address semantic gaps and uses a multi-

view attention method for feature extraction. This method 

is computationally more effective and enables improved 

processing of details in MRI pictures. Shen et al. [9] have 

used a transformer, HarDNet Structures, and designed an 
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encoder-decoder network structure U-Net++, utilizing an 

intensely supervised training strategy, enabling the model 

to undergo supervised learning for its multi-branch output. 

After multi-layer convolution, the local feature 

information of the input image is obtained using the 

HarDNet68 module. The transformer module slices the 

input image before acquiring global feature information 

for the medical image. Chen et al. [10] have utilized U-Net 

and transformers and introduced a new approach 

TransUNet. Transformers are used as encoder and U-Net 

is used as decoder. It encodes comprehensive global 

context by treating image features as sequential data but 

also maximizes the utilization of low-level CNN features 

through the implementation of a hybrid U-shaped 

architectural design. TransUNet leverages Transformers’ 

self-attention to capture global context, improving 

segmentation accuracy.  
Yan et al. [11] have introduced TransHRNet, a hybrid 

CNN Transformer model that uses parallel transformers to 

segment 3D medical images. It is based on the Effective 

Transformer (EffTrans) block. A parallel transformer 

refers to the use of multiple transformers operating in 

parallel on different resolution streams of the input image. 

The parallel transformers exchange information across the 

different streams to learn global information and capture 

long-range dependencies in the medical image. 

TransHRNet uses a Transformer to capture many contexts 

and can retain multiple-resolution representations from 

CNN characteristics. Madhavi et al. [12] have proposed a 

two-step training procedure using an encoder-decoder-

based architecture to segregate liver tumors. The 3D-

IRCADb1 dataset is taken into consideration for training 

and testing due to its tumor complexity, and MDICE, a 

combined loss function, is used to improve the learning 

potential. Nguyen et al. [13] have evaluated Transformer-

based semantic segmentation models for tumor delineation 

in histopathological images, specifically employing the 

PAIP liver histopathological dataset. The investigation 

involves a comparative analysis between six widely used 

Transformer-based models and six conventional CNN-

based models. The findings reveal that Transformer-based 

models, such as Segmenter [14], Swin-Transformer, and 

TransUNet, outperform CNN-based models in tumor 

segmentation. These Transformer models harness the 

global contextual information within an image, 

incorporating insights from long-distance relationships 

and dependencies, to achieve better segmentation results. 
Kelei et al. [15] had provided a comprehensive overview 

of the applications of Transformers in the field of medical 

image analysis. This paper delves into the core concepts of 

Transformers, reviews different Transformer architectures 

tailored for medical image applications, discusses their 

limitations, and explores key challenges and opportunities 

in utilizing Transformers for medical image analysis. 

The observations we have found based on the related 

work are: 

(1) The existing literature review lacks hyperparameter 

tuning on Transformers. 

(2) Preprocessing techniques like data augmentation 

and resizing have not been done for medical images 

to rectify data imbalance. 

(3) The implementation of this research in real-time 

could enable doctors to treat a larger number of 

patients, thereby offering substantial advantages 

across healthcare settings. 

III. METHODOLOGY 

This study aims to introduce an enhanced TransUNet 

model for the precise segmentation of healthy organs, 

providing valuable assistance to radio-oncologists. 

Various techniques were employed to optimize the 

model’s performance while maintaining the core 

TransUNet design, resulting in reduced computational 

requirements. 

(1) Preprocessing methods were utilized to improve 

the quality of the images in both the training and 

testing phases. 

(2) To address the imbalance in the dataset, we scale 

the input photos to 256×256 pixels. 

(3) The Dice+BCE loss function is utilized to assess 

the Model. 

This section describes the proposed methods for the 

segmentation of the GI tract. Information regarding the 

input dataset used for segmentation will be presented in 

Section A. The various pre-processing techniques 

discussed in Section B were used to improve the dataset 

before further processing. The TransUNet model 

Architecture, which was used in our project is shown in 

Section C. Fig. 1 describes the proposed model for the 

segmentation of the GI tract. 

 

 

Fig. 1. Proposed workflow for segmentation of GI tract. 

A. Dataset Description 

This research makes use of the ‘UW Madison GI Tract 

Image Segmentation dataset, comprising 38,496 MRI 
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scans from actual cancer patients. These scans were 16-bit 

grayscale PNGs [16]. The dataset encompasses 85 cases 

and includes a CSV file providing RLE-encoded pixels for 

the stomach, small bowel, and large bowel. Three columns 

make up the CSV file: id, class, and segmentation. “class” 

provides information about the object’s expected class, 

“id” provides a unique identity for each scan in the dataset, 

and “segmentation” provides details on the RLE-encoded 

pixels for the discovered object. The dataset has a folder 

labeled “train” that contains slice images for specific cases 

on specific days.  The names of the image files consist of 

four numerical values representing the dimensions of the 

image slices in terms of width and height (specified in 

pixels) and the pixel spacing in the horizontal and vertical 

directions (specified in millimeters as floating-point 

values). The MRI scan consists of 3 classes, namely large 

bowel, small bowel, and stomach. Our research utilizes 

36,496 scans for training and 2,000 scans for testing. The 

dataset is sourced from the UW-Madison Carbone Cancer 

Centre, a leading institution in MRI-Linac-based 

radiotherapy [17]. The MRI scan in the UW Madison GI 

tract segmentation dataset is shown in Fig. 2. 

 

 

Fig. 2. A sample image from the dataset. 

Table I represents the sample RLE-encoded pixels data 

for MRI Scans in the UW Madison GI tract segmentation 

dataset. 

TABLE I. MRI SCANS DATA IN CSV FILE 

ID class segmentation 

case123_day20_slice_0110 large_bowel 11845 10 12107 17 

case123_day20_slice_0110 small_bowel 17403 5 17462 19 

case123_day20_slice_0110 stomach  

case123_day20_slice_0111 large_bowel 11848 4 12110 12 

case123_day20_slice_0111 small_bowel 
16871 4 17135 8 

17207 

case123_day20_slice_0111 stomach  

B. Data Preprocessing 

Data preprocessing is a crucial step in which raw data is 

cleaned, transformed, and organized. Data is pre-

processed to enhance image quality and facilitate accurate 

analysis. It is the process of converting unprocessed data 

into a form that can be analyzed. It creates a standardized 

and optimized dataset, enabling more reliable diagnoses, 

precise analyses, and effective utilization. In this study, the 

pre-processing steps included are Resizing, Masking, Bias 

Correction, Histogram Equalization, Median Filtering, and 

Normalization. In the next sections, a detailed explanation 

of several pre-processing stages is provided. 

1) Resizing 

Resizing is the process of altering an image size. It 

modifies an image’s dimensions by either increasing or 

decreasing them.  In the context of MRI images, resizing 

is done to standardize the image dimensions for 

consistency in analysis or to meet specific requirements for 

input into machine learning models. This process typically 

involves interpolation techniques to adjust pixel values 

and spatial relationships, allowing images of different 

sizes to be brought to a uniform size for ease of comparison, 

analysis, or model training. The most prevalent image size 

in the sample is 266×266, occurring in 67.33% of cases. 

Following in descending order of frequency are 

dimensions 276×276, 310×360, and 234×234. To maintain 

consistency in image sizes for mask generation of 

segmented areas, we standardized all images to 256×256 

pixels. Fig. 3 displays the MRI scan both before and after 

the resizing [18]. 

 

 
(a)    (b) 

Fig. 3. MRI image of GI tract. (a) Before resizing, (b) After resizing. 

2) Masking 

The dataset contains Run-Length Encoding (RLE) 

encoded pixels. RLE represents the consecutive runs of 

pixels for each segmented region. To generate masks, 

decode the RLE information for identifying the precise 

pixel positions and their corresponding regions within the 

image. By reconstructing the pixel positions from the RLE 

data, a binary mask is created, where pixels belonging to 

the segmented area are marked, facilitating accurate 

delineation of structures or objects in medical images [19]. 

Fig. 4 represents the MRI scan and corresponding Mask 

generated from RLE-encoded pixels. 

 

(a)    (b) 

Fig. 4. (a) MRI image, (b) Mask. 
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3) Bias correction 

Bias Correction is a preprocessing technique that 

enhances the overall quality and reliability of MRI images. 

This technique is designed to compensate for non-

uniformities in signal intensity caused by factors like 

magnetic field inhomogeneities or acquisition variations. 

Magnetic Resonance Imaging (MRI) can suffer from 

spatially varying signal intensities, known as bias or 

shading, which may obscure important anatomical details. 

Bias correction methods aim to rectify these variations, 

ensuring a more consistent and accurate representation of 

tissue intensities. Fig. 5 displays the MRI scan both prior 

to and following bias correction. 

 

 
(a)    (b) 

Fig. 5. MRI Image. (a) Before bias correction, (b) After bias correction. 

4) Histogram equalization 

Histogram Equalization is a commonly employed 

method in image processing, designed to enhance the 

contrast of an image by reassigning the intensity values 

throughout its histogram. It accomplishes this by 

efficiently extending the image’s intensity range or 

spreading out the most frequent intensity values. When the 

useful data of an image is represented by close contrast 

values, this method typically enhances the global contrast 

of the image. This process improves the overall image 

quality, potentially aiding subsequent medical image 

analysis tasks by highlighting relevant anatomical features 

in MRI scans. Fig. 6 shows the MRI scan pre- and post-

histogram equalization. 

 

 
(a)    (b) 

Fig. 6. MRI image (a) Before histogram equalization, (b) After 

histogram equalization. 

5) Median filtering 

Median filtering is a common image processing 

technique used for noise reduction while preserving the 

edges and fine details of the image [20]. The median filter 

functions by systematically examining each pixel in the 

image and replacing its value with the median value of its 

neighboring pixels through an iterative process., 

contributing to a cleaner, more interpretable image. Fig. 7 

represents the MRI Scan before and after median filtering. 

 

 
(a)    (b) 

Fig. 7. MRI image. (a) before median filtering, (b) after median 

filtering. 

6) Normalization 

Normalization in MRI image processing involves 

scaling pixel intensities to a standardized range, often 

[0, 1]. This technique ensures consistency and 

comparability across images, mitigating variations in 

intensity due to acquisition differences [21]. 

Normalization enhances the interpretability of MRI 

images, facilitating accurate analysis and diagnosis. Fig. 8 

displays the MRI scan both prior to and following 

Normalization. 

 

 
(a)    (b) 

Fig. 8. MRI image (a) Before normalization, (b) After normalization. 

C. Segmentation using TransUNet model 

A proposal called TransUNet is made, which is 

beneficial to both Transformers and U-Net. In order to 

extract global contexts, the transformer takes tokenized 

patches of images from a CNN feature map as its input, 

while the decoder enhances the encoded features and 

integrates them with the high-resolution CNN feature 

maps for accurate localization. The task of locating and 

defining structures or regions of interest within medical 

pictures, such as organs or abnormalities, is known as 

medical image segmentation, and TransUNet was created 

expressly for this purpose. By using the advantages of 

transformer models which are renowned for their capacity 

to identify global dependencies within sequences and 

applying them to picture data, it seeks to get beyond the 

drawbacks of traditional CNN-based models [22]. Fig. 9 

represents the TransUNet Architecture. 

TransUNet is an encoder-decoder architecture, that 

effectively captures various levels of abstraction and 

incorporates skip connections to fuse detailed information 

from initial layers. By implementing self-attention 

mechanisms, it selectively focuses on relevant regions 

within the image, thereby enhancing segmentation 

Journal of Image and Graphics, Vol. 12, No. 3, 2024

306



 

accuracy. TransUNet adeptly combines the strengths of 

both transformers and U-Net architectures, resulting in a 

highly effective model. By integrating transformer 

components, it harnesses the power of self-attention 

mechanisms, allowing for global context understanding 

and long-range dependencies modeling. The skip 

connections within the U-Net architecture enable the 

seamless fusion of high-resolution details from the 

encoder with contextual information from the decoder, 

thereby preserving fine-grained information crucial for 

accurate segmentation. By incorporating self-attention 

methods through the use of transformers, the model is able 

to concentrate on pertinent areas of the picture, improving 

segmentation accuracy. TransUNet’s performance in 

segmenting medical pictures is improved by its ability to 

capture both local details and global contextual 

information. TransUNet can adapt to pictures of different 

sizes because of its patch-based methodology, in contrast 

to typical CNN-based models that are dependent on fixed 

image dimensions. In a variety of medical image 

segmentation tasks, TransUNet has proven to function at 

the cutting edge, demonstrating its efficacy in precisely 

identifying structures inside medical pictures. 

 

 
Fig. 9. TransUNet architecture. 

IV. RESULT AND DISCUSSION 

A. Hyper Parameter Tuning 

This is the process of selecting the best configuration of 

hyperparameters for a machine-learning model. They 

control aspects of the learning algorithm and influence the 

model’s performance and behavior. Hyperparameter 

tuning involves systematically searching through a 

predefined set of hyperparameter values to identify the 

combination that maximizes the model’s performance on 

a validation dataset [23], and finding the ideal combination 

of hyperparameter values that produces the highest 

performance on a particular dataset. Effectively tuning 

hyperparameters often leads to improved model accuracy, 

generalization, and efficiency. Hyperparameters include 

batch size, learning rate, resource optimization, and early 

stopping, number of epochs and adaptive strategies. 

Optimizing the learning rate can contribute to 

sustainable training by efficiently guiding the model 

towards convergence. A well-tuned learning rate reduces 

the overall computational resources needed for training, 

promoting energy efficiency and minimizing the carbon 

footprint associated with model development. 

Batch size influences the hardware resource 

requirements during training. Choosing an optimal batch 

size can lead to more energy-efficient training processes, 

aligning with sustainability goals by minimizing the 

overall computational power consumption. Tuning the 

number of epochs contributes to sustainable model 

development by avoiding unnecessary computational costs 

associated with excessive training. Optimizing this 

hyperparameter ensures that the model achieves 

satisfactory performance within a reasonable training time, 

conserving resources. 

1) Resource optimization 

Efficient hyperparameter tuning targets resource 

optimization by identifying the optimal configuration with 

minimal computational resources. This not only enhances 

model accuracy and generalization but also reduces the 

overall computational load and energy consumption 

during the training and evaluation phases. The process 

aligns with sustainability practices by minimizing the 

environmental impact associated with machine learning 

model development. 

2) Early stopping and adaptive strategies 

Incorporating early stopping criteria and adaptive 

learning techniques during hyperparameter tuning further 

contributes to sustainability. Early stopping terminates the 

training process when the model’s performance plateaus, 

preventing unnecessary computations. This strategic 

approach not only conserves computational resources but 

also aligns with sustainable practices, emphasizing the 

importance of minimizing energy consumption in machine 

learning model optimization. 

3) Sustainability benefits 

The integration of hyperparameter tuning and novel 

sampling methodologies yields significant sustainability 

benefits. By optimizing the utilization of computational 

resources, this approach reduces unnecessary 

computational load, thereby minimizing energy 

consumption throughout the model development lifecycle. 

This resource efficiency not only enhances the model’s 

performance but also aligns with sustainable practices, 

mitigating the environmental impact associated with 

training and optimizing machine learning models. 

The hyperparameters used in this proposed model are 

batch_size, Epochs, and n_splits. A batch size of 64, 

epochs of 25, and n_spits of 5, early stopping, and adaptive 

strategy were selected based on considerations of 

computational efficiency and model convergence. 

B. Comparison of Segmentation Performance Using 

Different Combinations of Loss Functions 

The performance of the TransUNet model is evaluated 

on the UW Madison GI tract Segmentation Dataset using 

Various Metrics including Model Loss, Dice coefficient, 

and IOU Coefficient. Our Proposed TransUNet Model was 

evaluated using the Dice+BCE Loss Function. Model loss 

evaluates training and validation loss.  

1) Analysis of training and validation loss 

Training loss measures the error between predicted and 

actual values during the model’s training phase, indicating 

how well it fits the training data. Validation loss assesses 
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the model’s performance on a separate dataset not used for 

training, gauging its ability to generalize to new, unseen 

data. Our Model achieves a training loss of 0.0923 and a 

validation loss of 0.1512 using Dice + BCE loss function. 

The reported training and validation losses, along with the 

use of the Dice + BCE Loss Function, provide insights into 

the performance of the TransUNet model on the UW 

Madison GI tract Segmentation Dataset. These metrics are 

essential for evaluating the effectiveness of the model in 

learning and generalizing from the training data to new, 

unseen data. 

The low training loss (0.0923) indicates that the model 

is fitting the training data well, capturing the underlying 

patterns and features. Fig. 10 depicts a comparison of the 

loss incurred by various loss functions. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 10. Training and validation loss curves for (a) Dice + BCE loss, 

(b)Tverskey loss, (c) Dice loss, (d) Focal + Dice loss. 

2) Analysis of the dice coefficient 

The dice coefficient measures the agreement between 

the predicted and true segmentation masks. The Dice 

coefficient ranges from 0 to 1, where 1 indicates perfect 

overlap between the predicted and true segmentation. 

Higher dice coefficients imply better segmentation 

accuracy and model performance. It is a measure of the 

similarity between the predicted and ground truth 

segmentation masks, and a higher value indicates better 

overlap and suggests that the model is effective at learning 

the patterns and structures in the training data Our 

TransUNet Model achieves a dice score of 0.854 on the 

training dataset and 0.7398 on the validation dataset. 

Fig. 11 represents the comparison of dice coefficient 

metrics among various loss functions. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 11. Dice metrics for (a) Dice + BCE loss, (b)Tverskey loss, (c) 

Dice loss, (d) Focal + Dice loss. 

3) Analysis of the IOU coefficient 

IOU is calculated as the intersection of the predicted and 

true regions divided by the union of these regions. The IoU 

coefficient ranges from 0 to 1, where 0 indicates no overlap, 

and 1 corresponds to perfect overlap. IoU is a valuable 

metric for assessing the accuracy of segmentation models, 

providing insight into how well the predicted and true 

regions align in relation to their combined area. Our Model 

achieves an IOU Score of 0.7964 on the training dataset 

and 0.7962 on the Validation dataset. Fig. 12 presents a 

comparison of Intersection over Union (IOU) coefficient 

metrics among various loss functions. 
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(a) 

 
(b)

 
(c) 

  
(d) 

Fig. 12. IOU metrics for (a) Dice+BCE loss, (b)Tverskey loss, (c) Dice 

loss, (d) Focal+Dice loss. 

4) Testing for various loss functions 

Testing involves evaluating the performance of a model 

on a set of images distinct from those used during training 

and validation. The MRI images serve as input data, the 

ground truth masks provide a reference for the actual 

anatomical structures, and the predicted masks are the 

model’s segmentation outputs. Testing MRI Scans with 

Ground truth and predicted mask for various loss functions 

are shown in Fig. 13. 

Testing MRI Scans with Ground truth and predicted 

mask are shown in Fig. 14(a) shows the correctly predicted 

mask when compared with the ground truth, whereas in 

Fig. 14(b) shows the wrongly predicted mask compared to 

the ground truth. 

 

 
(a)

 
(b) 

 
(c)

 
(d) 

Fig. 13. Testing images for (a) Dice + BCE loss, (b)Tverskey loss (c) 

Dice loss (d) Focal + Dice loss. 

 
(a) 

 
(b) 

Fig. 14. Testing images for Dice + BCE loss, (a) correctly predicted 

mask, (b) wrongly predicted mask. 

Table II shows the Comparison of training loss, IOU 

Coefficient and Dice Coefficient among different 

combination of loss functions such as Dice+BCE loss, 

Focal loss, Dice loss, and Focal+Dice loss. 

TABLE II. COMPARISON OF TRAINING LOSS, IOU COEFFICIENT AND DICE COEFFICIENT FOR DIFFERENT COMBINATION OF LOSS FUNCTION

Metrics Training loss 
IOU 

Coefficient 

Dice 

Coefficient 
Validation loss 

Val_IOU 

Coefficient 

Val_Dice 

Coefficient 

Dice + BCE loss 0.0923 0.7964 0.8584 0.1512 0.7962 0.7398 

Focal loss 0.2743 0.7157 0.7517 0.4283 0.7409 0.5823 

Dice loss 0.2616 0.7494 0.7557 0.4226 0.7589 0.5945 

Focal + Dice loss 0.1715 0.8126 0.8561 0.2873 0.8163 0.7405 
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Table III shows the Comparison of dice and IOU 

metrics for various models on the UW Madison GI tract 

Segmentation Dataset. 

TABLE III. COMPARISON OF DICE AND IOU METRICS FOR VARIOUS 

MODEL 

No. Model 
IOU 

coefficient 

Dice 

Coefficient 

1 

U-Net with 

EfficientNet-B3 

as backbone [24] 

85.3% - 

2 

U-Net with 

Resnet50 as 

backbone [24] 

84.9% - 

3 
U-Net with 

VGC16 [24] 
82.7% - 

4 U-Net [25] - 51% 

5 Mask R-CNN [25] - 73% 

6 Inception V3 [26] 76.87% 60.49% 

7 SeResNet 50 [26] 75.88% 58.2% 

8 DenseNet121 [26] 74.86% 55.58% 

9 VGG 19 [26] 66.46% 47.41% 

10 Proposed Model 85.84% 79.64% 

V. CONCLUSION 

We have proposed a TransUNet model for the 

segmentation of stomach and intestines in the GI tract. 

TransUNet consists of an encoder and decoder, the 

encoder extracts hierarchical features from the input image, 

capturing contextual information, while the decoder 

translates these features into a pixel-wise segmentation 

map. The primary emphasis lies in optimizing 

hyperparameters for the TransUNet model, including 

parameters like learning rate, batch size, and epochs. Data 

preprocessing methods have been applied to rectify dataset 

imbalances and enhance the quality of MRI scans. 

Assessing the TransUNet model through various 

combinations of loss functions. Dice+Binary Cross-

Entropy (BCE) loss function offers significant insights 

into its effectiveness in handling medical image 

segmentation tasks. The TransUNet model achieves a dice 

score of 0.8584 and an IOU score of 0.7964 on the UW 

Madison GI tract segmentation dataset. We hypothesize 

that potential future advancements could further improve 

our results and address the limitations inherent in the 

current network architecture. Future developments can be 

an exploration of advanced data augmentation strategies to 

diversify the training dataset, implementation of ensemble 

methods by combining models like U-Net and Mask R-

CNN possibly with U-Net acting as the foundation of 

Mask R-CNN and can enhance the accuracy of the model 

by using curriculum Learning [27]. 
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