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Abstract—This paper explores the use of deep learning 

algorithms in steganography detection. More specifically, it 

examines deep learning-based binary classification to 

distinguish between stego and non-stego images from the 

three steganography algorithms, The Wavelet Obtained 

Weights (WOW), Spatial Universal Wavelet Relative 

Distortion (S-UNIWARD), Highly Undetectable 

Steganography (HUGO). It also highlights the lack of 

research to develop a practical universal image 

steganography detection system using trained deep learning. 

The proposed farmwork combines multiple detection deep 

learning architectures to create a universal Deep 

Convolutional Neural Network (Deep-CNN). In this paper, 

we evaluate Deep-CNN-based image steganography detection 

techniques trained on images extracted from the three 

steganography algorithms. The dataset consists of 10,000 

images in PGM format, which is converted to JPG format 

with a size of 256256 pixels. The data set is classified into 

clear and stego images, which are the same image samples 

used in each category, with the three separate data sets for 

stego images created using three algorithms (WOW, S-

UNIWARD, and HUGO). The results show a slight decrease 

in detection accuracy, but the fine-tuning of the improved 

deep-CNN architecture performs better than other methods. 
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algorithms, binary classification, algorithm detection 

 

I. INTRODUCTION 

Deep Learning (DL) has gained significant attention in 

the computer vision field due to its ability to process data 

in its original form and learn representations of data 

through multilayer models. It has shown significant 

improvements in various image processing applications, 

including face recognition, object detection, and image 

compression [1, 2]. Cun et al. [3] conducted one of the first 

studies on DL and the use of Convolutional Neural 

Networks (CNN) and the handwritten digit recognition 

algorithm of gradient backpropagation. This research led 

to the development of more advanced DL techniques and 

brought the field of machine learning to new heights. 

Today, CNNs are widely used in computer vision 

applications. (Deep Convolutional Neural Network) Deep 

CNN achieves state-of-the-art performance in various 

image classification and detection tasks [1, 2, 4]. A cover 

image and a secret message are the inputs given to an 

image steganography algorithm, which creates another 

image like the original. However, this new image also 

contains information on its pixels that carry the secret 

message. This newly created visual representation is called 

a stego-image. There are several approaches to modifying 

the carrier image to hide a secret message [5–7]. These 

approaches are classified as follows. 

• LSB-Embedding Technique (LSB-ET): This approach 

is based on hiding a secret message within an image by 

replacing the least significant bit of each pixel with the 

binary data of the message [2]. 

• Spread Spectrum Technique: The technique includes 

first concealing the name of the game message inside 

noise that has much lower energy than the duvet picture. 

This noise is then delivered to the cover image to create 

the stego image. The concept behind this method is to 

spread the secret message throughout an extensive 

frequency spectrum, making it hard to stumble on or 

extract without knowing the original noise signal. 

Spread-spectrum image steganography has been 

extensively studied and is an effective method for 

hiding information within images without 

compromising their visible quality. Several studies 

have paid attention to this field by investigating and 

demonstrating the effectiveness of this technique [8]. 

• Masking technique: This technique involves changing 

the luminance of decided portions of the image to hide 

the name of the secret message. Redundancy is 

introduced to the secret message to enhance the 

resistance of the step object to lossy compression 

strategies, such as those used in Joint Photographic 

Experts Group (JPEG) photos. As a result, this 

technique is more effective than the Least Significant 

Bit (LSB) technique, whilst the duvet image is a JPEG 

image. The masking technique takes advantage of the 

fact that changes in luminance are less great to the 

human eye than color adjustments, allowing the secret 

message to be hidden greater effectively. By adding 

redundancy to the secret messages, the stego object is 

capable of resisting some degree of lossy compression 

without losing the integrity of the hidden message. This 
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makes it a powerful technique to hide records within 

Joint Photographic Experts Group (JPEG) images [2]. 

• Statistical technique: This technique of image 

steganography considers the statistical features of the 

cover image. The concept is to use “1-bit” 

steganography, where one small bit of records is 

hidden within every pixel of the cover image. However, 

in contrast to altering each pixel, only certain statistical 

features of the cover image are changed. This method 

ensures that the overall appearance of the cover image 

stays largely unchanged while nevertheless making an 

allowance for the secret message to be hidden inside its 

information. This method is considered powerful in 

preserving the visible integrity of the cover image, 

although it nevertheless provides a high level of 

protection for hidden messages [9]. 

• Distortion Technique: The distortion technique is a 

method of image steganography in which a secret 

message is hidden within a cover image. The 

steganography detector compares the cover image and 

the stego image to extract the message. However, this 

technique is less secure than other methods, making 

security considerations crucial [10]. 

• Adaptive Techniques: Image steganography is an 

adaptive technique that conceals secret data within an 

image, making it difficult for others to detect. Adaptive 

techniques embed secret data in less noticeable areas, 

maintaining the image’s appearance while hiding the 

message. Additionally, adaptive techniques adapt to 

image content, embedding statistics in regions that are 

much less likely to be observed by statistical 

analysis [11]. 

• The Edge Adaptive Technique (EAT): is an image 

steganography technique that hides a secret message 

inside pairs of pixels. Its customs aspect detection 

strategies randomly region for record embedding, 

specializing in areas of interest. By embedding the 

secret message within those areas, which may be less 

likely to be noticed by an observer, EAT can 

effectively disguise records while maintaining the 

visual integrity of the image [12]. 

• Highly Undetectable Steganography (HUGO): The 

Highly Undetectable Ste-GO HUGO is a spatial-

domain steganography set of rules that is proof against 

steganalysis strategies. It uses Syndrome-Trellis codes 

to embed modifications in areas of tough-to-model 

image cover while maintaining image data [13, 14]. 

Hugo utilizes changes in adjacent pixels to embed 

secret messages with minimal distortion.  

• The algorithm precisely chooses the embedding 

positions and reduces distortion to efficiently conceal 

statistical data within images while preserving their 

visual integrity [15]. Wavelet-Obtained Weights 

(WOWs): The WOW technique is a very good adaptive 

image steganography method that uses wavelet filters 

to hide information in images while keeping the 

original visitation of the image and not causing any 

major changes due to the steganography method [1]. 

• The Spatial Universal Wavelet Relative Distortion (S-

UNIWARD): The S-UNIWARD is a spatial 

steganography method that uses directional filtering 

banks and a special distortion function to hide 

information in images [1]. This method hides records 

without making significant changes to the cover  

image [14, 15]. 

Generally, image steganography detection algorithms 

play a crucial role in identifying hidden secret messages in 

images, but do not recognize the precise method or 

payload size that is used. These algorithms focused on 

many aspects of the image, including pixel values, 

frequency domains, or statistical qualities, to identify any 

deviations from the predicted patterns.  

Lu et al. [16] proposed a new method that uses a 

histogram of pixel Structuring Elements (SEs) to build 

feature sets for training models. The criterion emphasizes 

the selected SEs, which have highly flappable pixels and 

can distinguish between cover images and stego-images.  

Mustafa et al. [17] and Tan et al. [18] developed new 

methods to enhance CNN-based image steganography.  

Mustafa et al. [17] presented modifications to the Deep-

CNN model to improve detection accuracy. This includes 

efficient parameter initialization, the use of cyclic learning 

rates, and the Leaky Rectified Linear Activation (LReLU) 

activation function during the learning phase. The CNN 

model was adjusted for training using high-performance 

Graphic Processing Units (GPUs), which led to improved 

speed and improved accuracy in detecting hidden 

information. Channel-pruning-assisted Deep Residual 

Networ (Calpa-Net) was created by Tan et al. [18], a 

channel-running-assisted deep residual network 

architecture search approach that integrates channel 

pruning with deep residual networks for image 

segmentation. The goal of Calpa-Net is to improve the 

deep network structures of existing DL learning-based 

image steganography. These approaches make CNN better 

at finding hidden messages in images.  

Zhang et al. [19] proposed a network that uses a 

Siamese CNN-based architecture to make steganalysis 

methods more sensitive and specific. The Siamese-CNN-

based architecture with shared parameters consists of three 

phases: pre-processing, feature extraction, and 

fusion/classification. This advancement finally enhances 

the capability to detect hidden information in images. 

Based on the litterateurs presented above, it appears that 

the steganography techniques studied are capable of 

embedding secret messages with various payloads. 

The framework proposed in this paper is capable of 

accommodating images of any size while adapting 

different payloads compared to recently published 

steganography detection techniques. 

II.  REVIEW OF THE LITERATURE 

Recently, Deep Convolutional Neural Networks (Deep-

CNN) have emerged as indispensable tools in the field of 

structural analysis, facilitating the identification of hidden 

data within digital images.  

Numerous studies have demonstrated the efficacy of the 

precise implementation of CNN models in applications of 

data strategy analysis of data within digital images [20, 21]. 

Furthermore, some investigations have implemented the 
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highly effective Gaussian Neuron Convolutional Neural 

Network (GNCNN) [14, 20]. 

Fridrich and Kosovska’s [22] Spatial-Rich Model (SRM) 

also utilized convolution layers for image steganalysis. 

In the studies [14, 23], researchers made custom CNN 

architectures and batch normalization layers to improve 

bias parameters and detection. These studies highlight the 

importance of CNNs in detecting covert information in 

digital images. 

Brown et al. [24] introduced rectified linear units 

(ReLUs) as a means to enhance restricted Boltzmann 

machines, boosting the performance of deep learning 

models. Tanh activation functions are used for the first two 

layers and ReLUs for the remaining layers to avoid 

overfitting.  

Ye et al. [23] delved into hierarchical representations 

through deep learning, specifically for image steganalysis.  

Their approach called Ye Network (YeNet) aimed at 

capturing complex features within images, which 

contributed to improved detection accuracy. The YeNet 

employs a set of trainable high-pass filters, initialized with 

the coefficients of SRM filters, for noise extraction instead 

of traditional filters. Yedroudj et al. [25] presented an 

efficient deep CNN tailored for spatial steganography.  

A model uses a deep CNN to accurately detect hidden 

spatial information in images, even using advanced 

steganography techniques to conceal the message. 

Significant progress has been made in steganalysis, 

which now allows the detection of hidden messages in 

images. The capacity of CNNs to organize images of 

varying sizes has been expanded, thereby increasing their 

utility. The researchers expanded the application of CNNs 

to stigmatize images of various sizes [26], thereby 

enhancing the versatility and utility of CNN-based Steg 

analytic algorithms. In their effort to improve blind image 

steganography, Mustafa et al. [27] utilized multiple GPUs 

in addition to CNNs based on dynamic learning rates, 

respectively. Mustafa et al. [28] centered their research on 

the development of techniques that improved the precision 

and effectiveness of hidden data. 

Recent research has investigated methods to enhance 

blind image steganography. One such approach is Deep-

CNN, which is a hybrid of Xu et al. [14]. It operates by 

employing filters from the spatial rich model, batch 

normalization, and the Truncated Linear Unit (TLU) 

activation function [23]. In addition, after all convolutional 

layers except the first, average pooling is used. The 

activation functions utilized in hidden layers are Rectified 

Linear Unit (ReLU) and TLU, while Softmax is employed 

for classification [26]. This approach signifies a substantial 

progression in the domain of image steganography 

detection, providing a powerful tool for decoding hidden 

messages in images. In Ref. [26], the Ye-CNN was 

updated to effectively detect steganography in high-

resolution images. To adapt the network to high-resolution 

images, Ye-deep CNN was trained on low-resolution 

images [27]. According to IGNCNN, it is a blind image 

steganography detection model based on transfer learning. 

It has a Gaussian high pass filter as a preprocessing layer, 

and CNN learning dynamically modifies the learning  

rate [27, 28]. 

The Gaussian high-pass filter improves the removal of 

payload noise residuals, which makes detection more 

accurate. The dynamic learning rate of pre-trained and 

fine-tuned CNNs reduces error, which also makes 

detection more accurate. The work of Mustafa et al. [28] 

improved image segmentation on GPUs by adding a 

convolutional neural network that changes according to the 

batch size. For accelerated convergence, they used parallel 

computation with multiple GPUs, model- and data 

parallelism, and variable batch sizes. This technique has 

significantly increased the efficiency and accuracy of 

steganography processes, which makes it much simpler to 

discover hidden messages in images.  

This approach represents a significant advancement in 

the field of structural analysis, as it provides a robust 

instrument for detecting concealed messages within 

images [27]. Table I details algorithms for detecting image 

steganography based on deep learning, with a particular 

focus on those that employ deep CNN. 

It specifies the number of Preprocessing Layers (PPL), 

Convolutional Layers (CL), Fully Connected Layers 

(FCL), and Activation Functions (AF) used. The 

methodologies presented in Table I were trained and tested 

using the Boss-Base Image dataset [29, 30]. 

TABLE I. NETWORK TOPOLOGIES OF VARIOUS DETECTION 

MODALITIES FOR DL-BASED PICTURE STEGANOGRAPHY [30] 

DL-based 

method 
character PPL CL FCL AF 

[20] Model 1 √ 5 3 G 

[21] Model 2 √ 5 3 G 

[14] Model 3 √ 5 2 R 

[23] Model 4 ⨯ 8 1 R 

[25] Model 5 √ 5 3 R 

[27] Model 6 √ 5 3 G 

√: represents the available preprocessing layer. ⨯: represents the 

preprocessing layer not available. AF: for Gaussian or Relu, where G 

refers to the Gaussian layer and R to the Relu layer. 

 

Despite numerous research efforts to develop structural 

analysis approaches based on deep learning models, these 

intelligent approaches can learn intricate patterns and 

features from steganographic content [20, 27]. On the 

other hand, the effect of the fusion of deep-CNN models 

on the overall performance of an image steganography 

detection tool has not been extensively studied. 

In this paper, we evaluate the performance of the model 

on BOSS-base 1.01 datasets [29]. 

The individual deep learning-based image 

steganography detector is trained to detect specific image 

steganography techniques. Three steganography 

techniques, including S-UNIWARD [14], WOW [1], and 

HUGO [31], are studied separately. However, the main 

focus of this paper is to compare these deep learning-based 

techniques and evaluate the performance of deep learning-

based models on a random image exposed to an unknown 

image steganography technique that has not yet been 

investigated. The assigned DL-based structures used in the 

comparison are listed in Table I. 
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III. IMAGE STEGANOGRAPHY DETECTION ARCHITECTURE 

USING DEEP-CNN 

This paper aims to evaluate the performance of multiple 

pre-trained deep-learning models for image steganography 

detectors. The proposed framework combines multiple 

pre-trained deep-learning CNNs to create a universal 

image steganography detector. As shown in Fig. 1, 

combined predictions from each type of trained model 

result in a final class estimate that displays the most likely 

steganography technique and payload. A multimodal 

deep-CNN-based framework for image steganography 

detection makes it feasible to find hidden messages even 

with specific hidden techniques and payloads that are 

unknown.

 

Third  stage

Second stage

First stage

Images pooling

Test

Image

Pre-Processing

module Detection 

Binary 

classification 

Stego Cover

 

Fig. 1. A deep CNN-based system for detecting image steganography, with each red dotted box representing a different classifier model for detection 

steganography technique (S-UNIWARD, WOW, and HUGO).

The multimodal deep-CNN-based framework for image 

steganography detection in Fig. 1 comprises three main 

stages:  

• A preprocessing stage: the input images with size 

𝑛 × 𝑛  are divided into uanique image with sa 

isizeof  𝑛𝑜 ×where 𝑛 × 𝑛 is sthe theize of the data 

set, and no × is the size of a unique sub-divided 

image, based on which the deep CNNs of the 

framework are trained. Each image in the data set 

is applied separately to each classifier in the 

multimodal deep-CNN stage.  

• Multimodal deep-CNN stage: This stage serves as 

the central component of the proposed framework. 

This stage comprises pre-trained deep-learning 

CNNs, each with a distinct dataset, operating in 

parallel to categorize modalities. Every input image 

is subjected to a separate steganography procedure, 

resulting in the attachment of a unique payload 

value. We use DL-based classification models to 

build and train the multiclassifier model that can 

correctly identify steganography as either stego or 

non-stego images. 

• A detection and classification stage: This stage 

makes the final determination of whether the tested 

image is a stego image or a clean image per label 

image for all input images of each tested image. If 

the number of input images is equal to the number 

of stego images obtained from the preprocessing 

step, then the tested picture is a stego image. 

Moreover, the training dataset consists of images that 

are the same size as the input layer of the deep CNN 

deployed. In practical scenarios, images vary in size and 

are subjected to various steganography techniques, with 

variable possibilities of being detected. The practical 

aspect of the proposed framework is based on its structure. 

The preprocessing step involves dividing the test image 

into a certain image size, each of equal size to match the 

structure of the deep CNN. The count is then sent to a final 

step in the proposed framework, which determines if the 

image under test is a stego image by analyzing the findings 

from its applied images.  

The proposed deep-CNN for steganography detection 

add-on feature lets a new classifying mode be added to the 

existing deep-CNN. The proposed procedure can be 

trained using a different steganography approach for a 

specific payload. This new approach to classification 

accepts group images from the first stage of the framework 

and provides evaluation findings for these sub-images for 

the final decision stage. The last phase evaluates the 

collection of verified group images together with their 

corresponding unique identifiers from the deep-CNN 

classification model. It determines if the tested image is a 

stego image or not. 

IV. SIMULATION AND RESULTS EXPLANATION 

This section shows the results of the tests that were 

performed on each deep learning-CNN-based 

classification mode using a different deep learning-based 

method to find image steganography. 

A. Setup of the Testing Data Set 

The experiments were carried out on a computer 

equipped with an Intel Core TM i7-12650HX CPU, 64 GB 

of random-access memory, a 1 TB hard disk drive, and an 

Nvidia Repeats-in-Toxins (RTX) 4080 GPU. This is a 

powerful setup that can handle demanding tasks for 
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training the network. Network parameters were trained 

using deep CNN, available in [28].  

The standard BOSS-base 1.01 image dataset is used for 

the experiments, which is available in [29]. This dataset 

contains 10,000 grey-level cover images of size 512512 

pixels. 

 All images in the dataset are converted into sub-images, 

each of size 256256 pixels, resulting in a dataset of 

10,000 images with 256256 pixels for training each deep 

learning-based classifying modality for steganography 

detection.  

The sub-images dataset is divided into two halves, each 

containing 5,000 images. One-half of the data set is used 

in the training process. The other half is used in the testing 

of steganography detectors. The data set is exposed to 

different steganography techniques with specific payloads 

in Bits Per Pixel (BPP). The selected cases are listed in 

Table II. 

TABLE II. THE DATASET FOR SELECTED CASES WITH SPECIFIC 

PAYLOAD 

Steganography 

technique 

Payloads 

(BPP) 

Train dataset Testing dataset 

Clean Stego Clean Stego 

S-UNIWARD 

0.2 

10,000 

images 

10,000 

images 

5000 

images 

5000 

images 

0.3 

0.4 

WOW 

0.2 

0.3 

0.4 

HUGO 

0.2 

0.3 

0.4 

B. Results Explication 

This section shows the test results for each deep 

learning-based method of classifying using a different 

deep learning-based method for detecting image 

steganography. The performance of a deep learning-based 

detection model can be evaluated in terms of false ratio, 

missed detection, and correct detection. These metrics can 

be expressed as follows: 

The first equation provided computes the detection error 

𝐷𝐸 , which is a crucial statistic used for evaluating the 

efficacy of the detection model. 

 

 𝐷𝐸 = 𝐹𝑎𝑅 + 𝑀𝐷𝑟 (1) 

 

The detection error is calculated by adding e false alarm 

rate 𝐹𝑎𝑟  and the missed detecon rate 𝑀𝐷𝑟 . The FaR  is 

calculated the ratio of false positives FP to the total of false 

positives and true negatives TN A false positive refers to 

the erroneous identification of a target that is absent in 

reality. 

 

 
𝐹𝑎𝑅 =

𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (2) 

 

The detection rate 𝐷𝑠  also known as sensitivity, was 

defined as the ratio of true positives TP to false negatives 

FN, which measures how accurately the model can identify 

a target. 

 
𝐷𝑠 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

Thiessen detector rate 𝑀𝐷𝑟 is calculated as the ratio of 

false negatives FN to true positives TP, where a false 

negative happens when the model fails to identify a target. 

 

 𝑀𝐷𝑟 = 1 − 𝐷𝑠 (4) 

 

The equations offer a comprehensive way to assess the 

performance of a detection model, including false alarms, 

missed detections, and correct detections. Lower values of 

the detection error, false alarm rate 𝐹𝑎𝑅 , and missed 

detection rate 𝑀𝐷𝑟  indicate better performance, while 

higher values of the detection rate 𝐷𝑠  indicate better 

detection capability. The competitive approaches include 

the following DL-based architectures: 

Model 1: In contrast to current methodologies for deep 

CNN, this deep CNN approach integrates the processes of 

feature extraction and classification into a unified 

architecture, which enables the use of classification advice 

during the feature extraction phase. 

Model 2: Like the other deep CNN approaches, the 

authors propose a framework based on transfer learning to 

improve the deep CNN training method. They show that 

feature representations learned with a pre-trained CNN for 

detecting a steganographic algorithm with a high payload 

can be efficiently transferred to improve the learning of 

features for detecting the same steganographic algorithm 

with a low payload. 

Model 3: This neural network architecture incorporates 

many modifications, such as the use of absolute values for 

feature maps, the imposition of constraints on data values, 

and the integration of 1×1 convolutions. Despite being 

trained on a single kind of residual noise, this CNN has 

competitive performance in terms of detection compared 

to other approaches. This implies that the potential for 

enhancing steganalysis in the future lies in the use of well-

designed CNN. 

Model 4: The CNN structure that has been developed 

demonstrates the capability to repeat and optimize the 

fundamental processes of residual calculation, feature 

extraction, and binary classification within a cohesive 

framework. The performance of CNN-based steganalysis 

is improved by the integration of the selection channel 

information. 

Model 5: Like other deep-CNN architecture, it 

demonstrates superior performance compared to current 

methodologies in terms of error probability. In this 

architecture, deep-CNN includes a preprocessing filter 

bank, a Truncation activation function, five convolutional 

layers with Batch normalization and a scale layer, and a 

fully linked section of appropriate size. An improved 

database is used to improve training. 

Model 6: An improved Gaussian Convolutional Neural 

Network (IGNCNN) is presented, which incorporates 

transfer learning and a preprocessing layer with a fixed 

coefficient High-Pass Filter (HPF). The input proposes a 

CNN approach based on dynamic learning rates to 

minimize detection error costs. However, with the help of 

a case study of a nine-modality-based engine, the overall 
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performance of the proposed practical framework for deep 

learning-based image steganography detection is also 

investigated. This paper aims to investigate the 

performance of trained deep learning techniques when 

applied to random images that have been exposed to an 

unknown image steganography technique. This specific 

combination has not been studied before, which makes it 

the main focus.  

Table III shows the detection errors for stego-images 

exposed to three steganography techniques (S-UNIWARD, 

WOW, and HUGO) at payloads of (0.2, 0.3, and 0.4 bpp) 

using different deep learning-CNN-based steganography 

detection models from Table I.  

Fig. 2. Shows the detection error of different 

frameworks of image steganography detections based on 

deep learning models, as indicated in Table I. 

TABLE III. THE DETECTION ERROR FOR S-UNIWARD, WOW, AND HUGO STEGO IMAGES WITH DIFFERENT PAYLOADS USING DIFFERENT 

APPROACHES TO DEEP LEARNING-BASED 

Steganography S-UNIWARD WOW HUGO 

(Payload bpp) 0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4 

Model 1 44.9 33.7 24.1 48.6 33.5 22.3 41.3 31.9 22.6 

Model 2 41.3 31.3 26.5 44.7 29.9 21.6 37.9 29.4 23.12 

Model 3 46.9 36.12 32.6 41.1 24.8 19.9 41.4 33.13 22.8 

Model 4 48 39.4 37.4 31.7 24.4 18.7 43.34 38.4 35.7 

Model 5 44. 32.6 27.4 36.14 23.4 15.5 39.22 31.5 25.4 

Model 6 33.14 20.3 18.4 30.3 20.2 12.3 29.20 25.12 16.9 

 

It can be observed from this table that Improved Model 

6 achieves the lowest detection errors among the other five 

recent deep learning-based approaches for steganography 

detection. 

 

Fig. 2.  The percentage of detection error for the proposed deep-CNN 

steganography detector using different approaches of deep learning-

based steganography detections. 

For more details of the performance evaluation of the 

proposed framework for practical image steganography 

detection based on fine-tuning deep-CNN structure, Fig. 3 

shows detailed results of an evaluation of the performance 

of the proposed framework for practical image 

steganography detection using improved Model 6 and its 

five classifying modalities.  

Table IV presents the experimental results of the 

proposed image steganography detector, which is based on 

deep learning Model 6. This detector uses a nine-modality-

based engine, each classifying modality trained on datasets 

of different efficient steganography approaches. The data 

sets include payloads of 0.2, 0.3, and 0.4 BPP for each 

approach.  

These results demonstrate the effectiveness of the 

proposed image steganography detector in identifying 

hidden messages within images using a variety of different 

steganography techniques and payloads. Fig. 4 depicts the 

confusion matrices of the proposed deep learning 

steganography detection model (labeled Model 6 in 

Table I) at different payload levels (0.4, 0.3, and 0.2 BPP). 

 

Fig. 3. Experimental details of the number of images detected by the 

proposed multimodal steganography detector, using improved deep-CNN 

as labelled by Model 6. 

These matrices reveal the following: 

• True positives (correctly detected steganographic 

content) and false positives (non-steganographic 

content incorrectly flagged as steganographic). 

• true negatives (correctly identified non-

steganographic content) and false negatives 

(missed detection of steganographic content). 

TABLE IV. A DETAILED TOTAL NUMBER OF IMAGE DETECTION 

CAPABILITIES OF THE PROPOSED MULTIMODAL DETECTOR, BASED ON 

THE DETECTED COUNT OF SUBIMAGES IN EACH TESTED IMAGE POOL 

Steganography 

approach 

Stego 

apprehended 4 3 2 Total 

0.2 S-UNIWARD 1572 133 446 996 1574 

0.3 S-UNIWARD 1795 349 927 552 1828 

0.4 S-UNIWARD 1867 1010 716 144 1870 

0.2 WOW 1637 419 460 785 1664 

0.3 WOW 1830 508 762 564 1835 

0.4 WOW 1917 1102 626 220 1948 

0.2 HUGO 1555 233 532 804 1570 

0.3 HUGO 1669 408 821 448 1676 

0.4 HUGO 1863 975 563 338 1876 

Total 15706 15841 
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Payload 0.2 bpp WOW Payload 0.2 bpp S-UNIWARD Payloads 0.2 bpp HUGO 

   

Payload 0.3 bpp WOW Payloads 0.3 bpp S-UNIWARD Payloads 0.3 bpp HUGO 

   

Payload 0.4 bpp WOW Payload 0.4 bpp S-UNIWARD Payloads 0.4 bpp HUGO 

Fig. 4. The confusion matrices of the proposed deep learning steganography detection using, as labeled by Model 6, at different payloads. 

V. CONCLUSIONS 

This paper presents a framework for the actual 

construction of a universal multimodal deep learning-

based image steganography detection system. Specifically, 

the methodology in this paper focused on image 

steganography detection using the powerful power of 

CNN as a binary classifier into two class labels of images: 

stego and non-ego.  

The preprocessing stage, the core engine stage, and the 

final inference stage are the three primary phases that 

follow each other in the framework. The basic engine of 

the framework is built on nine different classification 

modalities, and it has an additional method that makes it 

possible to adapt to new deep learning-based 

steganography detection approaches in the future. The 

multimodal framework that has been developed is suitable. 

for usage in the actual world and has the ability to locate 

stereo pictures of any resolution with a detection error of 

21.14%. It can detect stego images that have previously 

been subjected to any kind of steganography at payloads 

of 0.4, 0.3, and 0.2 bits per image. 
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