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Abstract—The Yanagihara method is used to evaluate facial 

nerve palsy based on visual examinations by physicians. 

Examples of scored images are important for educational 

purposes and as references, however, due to patient privacy 

concern, actual facial images of real patients cannot be used 

for educational purposes. In this paper, we propose a solution 

to this problem by generating facial images of a virtual 

patient with facial nerve palsy, that can be shared and 

utilized by physicians. To reproduce the patient facial 

expression in a public face image, we propose a method to 

generate a swapped face image using the improved Cycle 

Generative Adversarial Networks (Cycle GAN) with a skip-

layer excitation module and a self-supervised discriminator. 

Experimental results demonstrate that the proposed model 

can generate more coherent swapped faces that are similar to 

the public face identity and patient facial expressions. The 

proposed method also improves the quality of generated 

swapped face images while keeping them identical to the 

source (genuine) face image.  

 

Keywords—facial nerve palsy, deep learning, Generative 

Adversarial Networks (GAN), Faceswap, few-shot image 
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I. INTRODUCTION 

Facial nerve palsy is a disease that paralyzes the nerves 

of the facial muscles, preventing voluntary movement of 

certain parts of the face. According to study, there are 20–

30 cases of facial nerve palsy for every 100,000 people [1]. 

The diagnosis of facial nerve palsy necessitates adequate 

treatment depending on the degree of paralysis as it has the 

chance for long-term damage. In Japan, the most common 

method used to assess the degree of paralysis is the 40-

point Yanagihara method [2]. In this method, the paralysis 

score is assessed by the expression of facial muscles based 

on 10 different facial expressions, including asymmetry 

when at rest and nine other facial expressions. Fig. 1 shows 

the 10 facial expressions used for evaluation in the 

Yanagihara method. However, this evaluation method is 

based on visual examination, results vary from doctor to 
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doctor, especially for young doctors [3, 4]. To solve this 

problem, it is desirable to develop educational resources 

that might act as a specific indicator to unify evaluation 

standards among doctors. However, due to privacy 

concerns regarding patient person data, actual (genuine) 

facial images of patients cannot be used in academic 

conferences or medical training. 

 

 

Figure 1.  The 10 facial expressions of the Yanagihara method. 

To solve this privacy problem, we employed 

Conditional Generative Adversarial Networks (CGAN) to 

generate virtual facial images that are similar to the 

expressions of patients with facial palsy in our previous 

works [5, 6]. In our previous methods, we extracted facial 

landmark points from the patient and used them as facial 

expression information to generate virtual facial nerve 

palsy patient faces. Due to the lack of patient data, the 

results were unsatisfactory and inconsistent with the 

patient’s identity and facial expression. To this end, in this 

paper, we propose an improved Cycle GAN with a skip-

layer excitation module (SLE module) and a self-

supervised discriminator to generate a virtual facial image 

with accurate expression. 

II. RELATED WORK 

In this study, we focus on the task of translating a public 

facial expression to a facial nerve palsy facial expression 
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(patients). We generate a corresponding image using only 

a small size of training data. Recently, some studies have 

focused on few-shot learning and translating facial 

expressions. 

A. Star GAN 

The Star GAN [7] method realizes multiple expression 

translation in a single model. The Star GAN employs a 

generator and a discriminator with two inputs, i.e., an 

image and a domain, to realize translation to multiple 

domains. However, this method can only translate to a 

specific domain. In contrast, the facial expressions 

reproduced by the proposed method are unique to each 

patient. Thus, the Star GAN method is not suitable for 

representing patient’s facial expression in specific 

domains. 

B. Multi cGAN 

Previously, we have proposed the multi-conditional 

GAN (MC-GAN) [5, 6], which uses two images, the public 

face and the image with lines connecting facial landmark 

points extracted from the patient, to generate a public face 

image with the same facial expression as the patient. The 

MC-GAN model extracts 68 landmark points from the 

patient and connects them with lines for each facial organ 

using this image as facial expression information. Thus, it 

is possible to reproduce the patient’s unique facial 

expressions. However, the MC-GAN model frequently 

generates an unnatural face due to the differences in face 

shape between the patient and the public face. The model 

also generates faces that do not have the same facial 

expressions as the patient due to the lack of patient data. 

C.  Faceswap 

Faceswap [8] is a face manipulation method that swaps 

the face identity between two people using deep learning 

models. The swapped face has the source face and 

attributes (e.g., pose, expression, lighting, and background) 

from the target image. Here, two autoencoders are 

employed to generate the swapped images. In this method, 

all information about the face, e.g., shape, facial 

expression, and identity, is quantified by the model to 

generate images. Thus, this image generation process is 

not affected by differences in face shape and can generate 

natural faces even when there is a difference between 

public face and patient in facial shape. However, the 

Faceswap model cannot generate high-fidelity swapped 

faces with small amounts of training data. In a previous 

study [9], we proposed an improved version of the 

Faceswap model that can generate swapped faces with the 

same identity as the public face by introducing two 

discriminators. The first discriminator determines if the 

input image is a real or fake image, and the second 

discriminator, i.e., the identity discriminator, determines 

whether the input pair of images show the same or 

different people. These discriminators are trained using 

adversarial learning to the mock the generator model. 

However, that model could not generate swapped faces 

with the same facial expression as the patient. 

D. Cycle GAN 

Cycle GAN [10] is a generative model that translates the 

style of an image. Previously introduced image-to-image 

translation models, such as Pix2Pix [11], require paired 

images as training data. However, Cycle GAN [10] does 

not require paired images for model training. Cycle GAN 

implements two generators and two discriminators for 

translating the style between A and B. The image style is 

translated from A to B by one of the incorporated 

Generators, and from B to A by the other Generator. While 

one discriminator decides if the style A is there or not, the 

second discriminator decides on the style B. Using an 

adversarial learning strategy that enforces the translation 

between the two styles (A and B), the included Generator 

and Discriminator networks are trained. Additionally, a 

cycle consistency loss is introduced to ensure that the 

translated image must generate images that are identical to 

the original given image. This constrained (cycle 

consistency loss) helps in converting the given image from 

style A to style B and back again from style B to style A. 

This technique is used in our proposed Faceswap to 

generate high-fidelity and consistent swapped facial nerve 

palsy expression images. 

E. Fast GAN 

Liu et al. proposed the lightweight Fast GAN 

structure [12] to handle the few-shot image generation task 

with minimum computing cost. Fast GAN [12] includes a 

slip-layer channel-wise excitation module (SLE module) 

and a self-supervised discriminator that has been trained as 

a feature encoder. This model converges from scratch with 

just a few hours of training on a single GPU, and it 

demonstrates consistent performance, even when training 

is performed with fewer than 100 training samples. Thus, 

the proposed method incorporates the Fast GAN [12] 

model structure to improve the performance of our model. 

III. PROPOSED METHOD 

In this study, we propose an improved Cycle GAN with 

the SLE module and self-supervised discriminator to 

generate a virtual facial image with accurate facial 

expression as the patient. The proposed method is an 

improved version of Faceswap [8]. Fig. 2 shows a 

conceptual diagram of Faceswap. In the learning phase, we 

first implement autoencoders GA and GB, which share the 

encoder component. Here GA learns the public face 

reconstruction, and GB learns the patient face 

reconstruction. In the swapping phase, the trained models 

are used to generate the swapped face. Note that we only 

use the trained encoder and trained GA decoder as the 

swapping generator to swap the patient’s face to a public 

face. The patient face is input to the swapping generator, 

and the output image is the swapped face, i.e., the public 

face with the same facial expression as the patient. As a 

result, we can obtain a facial image of a virtual facial nerve 

palsy patient.  
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Figure 2.  Conceptual diagram of Faceswap [8]. 

In this study, we introduce cycle consistency loss in 

addition to the previous research [9], and we attempt to 

generate high-fidelity swapped faces, especially for facial 

expressions. Fig. 3 shows the training processes of the 

previous model [9] and the proposed model. In addition, 

we introduce the SLE module to the generator and the self-

supervised discriminator to facilitate stable learning. Fig. 4 

shows the model structure of the generator in the previous 

model [9] and the generator with the SLE module in the 

proposed model. Fig. 5 shows the model structure of the 

discriminator in the previous method [9] and the self-

supervised discriminator in the proposed method. In the 

following, we describe the Cycle GAN [10] and few-shot 

image generation methods, the SLE module, and the self-

supervised discriminator. 

 

 

Figure 3.  Training procedures of the (a) previous model [9] and (b) proposed model. 

 

Figure 4.  Model structure of (a) the generator in the previous method [9] and (b) the generator with the SLE module in the proposed method. 

 

Figure 5.  Model structure of (a) the discriminator in the previous method [9] and (b) the self-supervised discriminator in the proposed method. 
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A. Cycle GAN or Faceswap 

In the proposed method, we impose an additional 

constraint on the previous model [9]. The model 

implements both a GAN structure and cycle consistency 

loss. Thus, we refer to the proposed model as the Cycle 

GAN [10]. 

In the proposed model, discriminator (D) is trained to 

discriminate the training image as real (1) and the image 

generated by the autoencoder as fake (0). By introducing 

D, we attempt to generate a swapped face that is clearer 

and more realistic.  

The identity discriminator (DI) is trained to determine 

whether the input pair of face images are the same person. 

Fig. 6 shows the model structure of the identity 

discriminator. Here, DI outputs real (1) if they are the same 

person or fake (0) if they are different people. Note that DI 

is trained using the same person pair (real) and another 

person pair (fake). In addition, DI is trained to be 

adversarial with GA, GB Specifically, DI tries to 

discriminate that swapped face GA (B) and public face pair 

is fake. By introducing DI, we attempt to generate a 

swapped face that has the same identity as the public face. 

Cycle consistency loss is implemented in the proposed 

model. Here, if we use the swapped face GA (B) generated 

by inputting the patient face into the 𝐺𝐴 as the input to the 

GB, the generated face GB (GA (B)) should be the original 

patient face. Using this property, the difference between 

the input image 𝐁 and the GB (GA (B)) is added to the 

model’s loss function. We also obtain the difference when 

we input public face 𝐀. By introducing this constraint, the 

swapped image GA (B) is likely to have the same 

expression as the original patient face B, and we can 

generate a high-fidelity swapped face. Fig. 3(b) shows a 

conceptual diagram of the training process employed in 

the proposed model. 

 

 

Figure 6.  Model structure of identity discriminator. 

We utilize adversarial training in the proposed model. 

First, we define the reconstruction loss 𝐿𝑅 as follows: 

𝐿𝑅 =  𝔼𝐀,𝐁~𝑝𝑑𝑎𝑡𝑎(𝐀,𝐁)
[|𝐀 − 𝐺𝐴(𝐀)| + |𝐁 − 𝐺𝐵(𝐁)|] (1) 

where 𝔼  represents expectation. Second, we train the 

proposed model to generate swapped faces that D and DI 

discriminate as real. The adversarial loss with D is 

expressed as follows: 

𝐿𝐷 =  𝔼𝐀,𝐁~𝑝𝑑𝑎𝑡𝑎(𝐀,𝐁)
[log|𝐷(𝐺𝐵(𝐀))| + log|𝐺𝐴(𝐁)|] (2) 

where D (•) is the output of the discriminator and 

represents a real or fake value of 0 or 1, respectively, 

regarding the realism of the image. The adversarial loss 

with DI is expressed as follows: 

𝐿𝐷𝐼 = 𝔼𝐀,𝐁~𝑝𝑑𝑎𝑡𝑎(𝐀,𝐁)
[log|𝐷𝐼(𝐀, 𝐺𝐴(𝐁))| +

log|𝐷𝐼(𝐁, 𝐺𝐵(𝐀))|]                                     (3) 

where DI (•,•) is the output of the identity discriminator 

and represents a real or fake value of 0 or 1, respectively, 

regarding the identity similarity of the images. The cycle 

consistency loss is expressed as follows: 

𝐿𝐶 =  𝔼𝐀,𝐁~𝑝𝑑𝑎𝑡𝑎(𝐀,𝐁)
[|𝐀 −  𝐺𝐴(𝐺𝐵(𝐀))| + |𝐁 −

 𝐺𝐵(𝐺𝐴(𝐁))|                                                   (4) 

Finally, the proposed model is trained with the sum of 

the above losses, which is expressed as follows: 

𝐿𝐺  =  𝜆𝐿𝑅 +  𝐿𝐷 + 𝐿𝐷𝐼 + 𝜆𝐿𝐶                     (5) 

where  is a hyperparameter that is set to 50. 

B. SLE Module and Self-Supervised Discriminator 

Due to the lack of training data, leaning GANs is 

unstable, and the gradient vanishing problem occurs. Thus, 

we propose an improved model for few-shot image 

generation. Here, we implement the SLE module and the 

self-supervised discriminator [12] in the proposed model 

to realize stable learning and allow the model to efficiently 

utilize features in the image generation process. 

The SLE module stabilizes deep model training for 

high-resolution image generation with only a small 

increase in computational costs. Fig. 7 shows the model 

structure of the SLE module, and Fig. 4(b) shows the 

model structure of the generator, which includes the SLE 

module. The SLE module has two unique designs. First, it 

implements skip connections at low computational cost by 

performing channel-wise multiplication with other level 

features compared to element-wise addition, e.g., a 

Residual Block. Second, the SLE module performs 

convolution such that low-level features are the same as 

the channels of the high-level features and multiplies them, 

as shown in Fig. 7. In existing GAN models, skip 

connections are only used within the same resolution. In 

contrast, the SLE module performs skip connections 

between resolutions with a much larger range (e.g., 82 and 

642, and 162 and 1282) because equal spatial dimensions 

are no longer required. As a result, the proposed model 

functions like a self-attention mechanism. Thus, the 

proposed model can generate images efficiently from the 

extracted feature maps, and the gradient vanishing 

problem is avoided by connecting the high-level layer’s 

gradient to the low-level layer. 

The self-supervised discriminator is employed to 

reconstruct the input image. Fig. 5(b) shows the model 

structure of the self-supervised discriminator. This 

discriminator performs real/fake discrimination and 

image reconstruction when a real image is input, and only 

real/fake discrimination when a fake image is input. Note 

that the feature map extracted by this discriminator can be 

used for real/fake discrimination and image reconstruction. 

Thus, we expect the feature map to contain all relevant 

image information. As a result, we can prevent the feature 
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maps extracted by D from becoming sparse, and we can 

stabilize the learning for GAN. 

The loss function of the self-supervised discriminator is 

expressed as follows: 

𝐿𝑆𝑆𝐷 = 𝔼𝐀,𝐁~𝑝𝑑𝑎𝑡𝑎(𝐀,𝐁)
[log|𝐷(𝐀)| + log|𝐷(𝐁)|

+ log|1 − 𝐷(𝐺𝐵(𝐀))|

+ log|1 − 𝐺𝐴(𝐁)| + |𝐀 − 𝒢(𝐟(𝐀))|

+ ||𝐁 − 𝒢(𝐟(𝐁))||] 

(6) 

where f (•) is the intermediate feature maps from the 

discriminator, and function 𝒢 (•) contains the processing 

on 𝐟 and the decoder. 

 

 

Figure 7.  Model structure of the SLE module. 

IV. EXPERIMENT 

A. Implementation 

In our experiment, we used facial expression images for 

two people (one female patient, and one male patient) 

provided by the Osaka Police Hospital. The dataset 

contained 2 (patients) × 10 facial expressions, with 60 

images for each facial expression; thus, the dataset 

contained a total of 1,200 original images. The dataset was 

cropped around the face landmark points and normalized 

to pixel values of −1 to 1. Here, all images were resized to 

256 × 256 pixels. We also augmented the dataset (Section 

IV-B). Finally, we used a total of 1,200 images. The 

proposed models were trained using this dataset, the 

number of epochs was set to 450, and the batch size was 

set to 30. In addition, the Adam optimizer was employed, 

where attenuation parameter beta1 was set to 0.5, 

parameter beta2 was set to 0.999, and the leaning rate 

alpha was set to 0.0002. Here, we used Python as the 

programming language, and TensorFlow was employed 

as the framework. 

B. Data Augmentation 

The experimental dataset was augmented by applying 

left-to-right flipping, random cropping, and noise to the 

images. Note that these data augmentation techniques 

were applied at the beginning of each epoch to address the 

lack of data. Specifically, left-to-right flipping was 

applied at a 50% probability, random cropping was 

applied with magnification based on a normal distribution, 

and three cannels noises based on normal distribution at a 

probability of 80%. Fig. 8 illustrates the data 

augmentation process. Note that the identity, structure and 

nature of the original data are not substantially changed by 

these operations in this case. Therefore, we believe that 

the outcomes of the Cycle GAN are unaffected by these 

data augmentation techniques. As a result, the proposed 

model was trained on a dataset with many variations.  

 

 

Figure 8.  Data augmentation process. 

C. Experimental Results 

As shown in Fig. 9, we compared the proposed model 

with the original Faceswap model, our previous model [9] 

(i.e., the model with D and DI), and the model with D, DI, 

and cycle loss. Figure 9 shows (from left-to-right), the 

public face, the input image (i.e., the patient’s face), the 

results of the original model, the results of the model with 

D, DI, the results of the model with D, DI, and cycle loss, 

and the results of the proposed model. Figs. 10–12 show 

the values of the generator loss and discriminator loss of 

the proposed model. As shown in Fig. 9, the proposed 

model generated the highest fidelity swapped images that 

have same identity as the public face and the same facial 

expression as the patient. Note that the original Faceswap 

model generated images that cannot be identified as the 

corresponding public face. In addition, our previous 

model and the model with D and DI generated swapped 

faces that have the same identity as the public face but 

different facial expressions. The proposed model and the 

model with D, DI, and cycle loss generated swapped faces 

that have mostly the same facial expression as the patient 

for other models. In addition, the proposed model 

generated swapped faces with similar facial expressions 

as the patient more than the model with D, DI, and cycle 

loss because the proposed model efficiently extracted 

feature maps even with a small amount of training data 

due to the implementation of the SLE module and self-

supervised discriminator. Fig. 13 shows the simulation 

results for all facial expressions in the Yanagihara method. 

As can be seen, the proposed model generated swapped 

faces with the same expressions as the patient, including 

the degree of paralysis, in all facial expressions. In terms 

of the patient face, we could not accurately observe 

whether the facial expression was the same or not because 

the patient face must be blurred. Thus, we simulated facial 
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expressions between public faces using the proposed 

model. Fig. 14 shows the simulation results for all facial 

expressions of the Yanagihara method. As can be seen, the 

proposed model can mostly simulate the facial 

expressions. However, the details of the facial expressions 

in the swapped face are not entirely the same as those of 

the patient face, e.g., the eyes and teeth (Fig. 13: closure 

of one eye and toothy movement), and artifacts are evident 

in some areas of the swapped face (Fig. 14: raised 

eyebrows). 

Two user studies were also conducted to evaluate the 

performance of the proposed model. Here, the users 

evaluated (1) whether the simulation results have the same 

facial expression as the input image and (2) whether the 

simulation results have the same identity as the public face. 

In each study unit, the patient face (i.e., the input image), 

the public face, and four swapped faces generated by the 

original Faceswap model, the model with D and DI [9], the 

model with D, DI, and cycle loss, and the proposed model 

were shown to the participants. We asked the participants 

to evaluate the swapped faces on a scale of 1–5 (5: 

completely the same; 1: completely different) for the 

above two points. Finally, we collected answers from 20 

participants. Table I shows the mean and standard 

deviation results of the user studies. As shown, the 

proposed model largely surpassed other models in in 

terms of both facial expression and identity. 

 

 

Figure 9.  Comparison of results obtained by the original Faceswap 

model, the model with D and 𝐷𝐼 [9], the model with D, 𝐷𝐼, and cycle 

loss, and the proposed model. There are four facial expressions from the 
Yanagihara method: (top to bottom): at rest, tight closure of eyes, whistle, 
and under lip turn down. 

 

Figure 10.  Values of generator reconstruction loss (A_rloss and B_rloss) 

and cycle loss (A_closs and B_closs). For example, A_rloss represents 
the reconstruction loss of GA. 

 

Figure 11.  Values of generator adversarial loss (A_gloss is the 
adversarial loss of GA, and B_gloss is the adversarial loss of GB). 

 

Figure 12.  Values of discriminator loss (disc_loss is the self-supervised 
discriminator real/fake loss, disc_recon_loss is the self-supervised 

discriminator reconstruction loss, and Idisc_loss is the identity 

discriminator loss) 

 

Figure 13.  Simulation results for all facial expressions in the Yanagihara 

method. For each facial expression, the left image is the patient face, and 
the right image is the simulation result of the proposed model 
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Figure 14.  Simulation results for all facial expressions in the Yanagihara 

method between two public faces. For each facial expression, the left 
image is one public face, and the right image is the simulation result of 
the proposed model. 

TABLE I.  USER STUDY RESULTS (MEAN AND STANDARD DEVIATION) 

 

Original 

model 

Model 
with D and 

DI [9] 

Model 

with D, 

DI, and 
cycle loss 

Proposed 

model 

Facial 
expression 

2.42/0.81 3.05/0.76 3.89/0.64 4.68/0.46 

Identity 2.11/0.71 3.11/0.91 4.00/0.73 4.47/0.50 

D. Discussion 

Our investigation demonstrates that the proposed 

model generates highly realistic swapped faces, and the 

results shows improved accuracy for generating images of 

facial nerve palsy expressions that are also the same as the 

given input image. In our experiments, we discovered that 

the use of cycle loss is useful to enhance the quality of 

facial expression, generating more coherent and clearer 

images. Additionally, the outcomes demonstrate the 

usefulness of the SLE module and Self-Supervised 

Discriminator network in stabilizing the GAN training and 

enhancing the images generated. The SLE module enables 

the network to generate enhanced images using different 

resolutions by weighting the important channels, while the 

Self-Supervised Discriminator facilitates the network to 

extract key facial expression features from the entire 

image. However, in some cases, the patient’s facial 

expression was only partially retained, which remains a 

major challenge to solve. This is because the public facial 

dataset does not contain any facial images of persons 

having the same facial expressions as the patient’s 

paralyzed expression. We intend to use deformation 

region vectors of facial expressions using the techniques 

like optical flow to address these issues and increase the 

accuracy of swapping facial expressions. Some results 

show a few artifacts and less clarity in the face shape in 

comparison to a real face. The lack of the training data is 

the primary reason for these problems. A possible solution 

could be the use of state-of-the-art Super Resolution 

frameworks to enhance the visual quality of the generated 

images. Our proposed method has not encountered the 

overfitting issue despite the limited size of training data. 

The convergence of loss functions is shown in Figs. 10–

12. These figures illustrate the utilization of Generator 

Reconstruction losses and Cycle Consistency loss are 

useful in converging the framework well. In our future 

work, we will increase the training dataset in order to 

enhance the performance of the model. 

V.  CONCLUSION 

In this paper, we have proposed an improved version of 

the Cycle GAN with an SLE module and a self-supervised 

discriminator. The proposed model can generate high-

fidelity swapped faces that have the same identity as the 

public face and the same facial expression as the patient. 

Cycle consistency loss is considered in the proposed 

model to keep the expression of the swapped face the same 

as that of the input face. In addition, the SLE module is 

implemented to allow the generator to efficiently extract 

feature maps and generate high-fidelity swapped faces. 

The self-supervised discriminator is implemented to 

prevent mode collapse and stabilize model learning. The 

experimental results demonstrate that the proposed model 

can generate higher fidelity swapped faces than the 

compared models. Finally, the swapped faces generated 

by the proposed model can be used to represent virtual 

facial paralysis patients that can be used in related 

academic conferences and medical training. Although, in 

this paper, we have performed face expression swapping 

between Japanese faces, our proposed model can be 

combined with other GAN-based models (such as Style 

GAN [13]) to perform face translation for other races, 

using available Japanese facial expression data.  
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