
Mobile Dermatoscopy: Class Imbalance 

Management Based on Blurring Augmentation, 

Iterative Refining and Cost-Weighted Recall Loss  
 

Nauman Ullah Gilal*, Samah Ahmed Mustapha Ahmed, Jens Schneider, Mowafa Househ, and Marco Agus 

College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar;  

Email: saah33911@hbku.edu.qa (S.A.M.A.), jeschneider@hbku.edu.qa (J.S.), mhouseh@hbku.edu.qa (M.H.), 

magus@hbku.edu.qa (M.A.) 

*Correspondence: giul30541@hbku.edu.qa (N.U.G.) 

 

 

 
Abstract—We present an end-to-end framework for real-time 

melanoma detection on mole images acquired with mobile 

devices equipped with off-the-shelf magnifying lens. We 

trained our models by using transfer learning through 

EfficientNet convolutional neural networks by using public 

domain The International Skin Imaging Collaboration 

(ISIC)-2019 and ISIC-2020 datasets. To reduce the class 

imbalance issue, we integrated the standard training pipeline 

with schemes for effective data balance using oversampling 

and iterative cleaning through loss ranking. We also 

introduce a blurring scheme able to emulate the aberrations 

produced by commonly available magnifying lenses, and a 

novel loss function incorporating the difference in cost 

between false positive (melanoma misses) and false negative 

(benignant misses) predictions. Through preliminary 

experiments, we show that our framework is able to create 

models for real-time mobile inference with controlled trade-

off between false positive rate and false negative rate. The 

obtained performances on ISIC-2020 dataset are the 

following: accuracy 96.9%, balanced accuracy 98%, 

ROCAUC=0.98, benign recall 97.7%, malignant recall 97.2%.  
  

Keywords—melanoma detection, The International Skin 

Imaging Collaboration (ISIC) dataset, mobile dermatoscopy, 

class imbalance, refining, recall loss 

 

I. INTRODUCTION 

The melanoma of skin is a growing global health 

concern. According to the most recent statistics from the 

International Agency of Research in Cancer (World Health 

Organization) in 2020 all over the world were diagnosed 

324,635 new cases and 57,043 persons died from 

melanoma, ranking it at 15th position in the list of most 

common neoplastic conditions [1]. Like in most of the 

cancers, even for melanoma, early diagnosis is decisive for 

planning successful therapies and avoiding the 

degeneration of the disease into metastases with 

consequent involvement of other tissues and organs. 

Currently, the diagnostic guidelines involve direct visual 

assessment of nevi from dermatologist specialists through 

the aid of dermatoscopes, that are handheld devices 
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consisting of a zoom magnifier (normally 10 times), a light 

source (that can be polarized or non-polarized), a 

transparent plate and sometimes a liquid medium between 

the instrument and the skin. These devices also provide the 

way to digitally acquire skin lesion images that can be 

examined on screens by specialists and collected and 

shared between practitioners and patients. 

The initial diagnosis of melanoma requires a 

microscopic diagnosis, and obtaining a microscopic image 

is quite easy, making skin image data enormous. However, 

the images containing skin cancer are minimal, making the 

data large and highly biased, which creates a challenge in 

the deep learning world. In fact, in case of extreme class 

imbalance, traditional deep learning models are biased 

towards overall accuracy, that is mostly depending on the 

recognition of most frequent cases (benign for 

dermoscopic classification). On the other side, self-

diagnosis tools need to be reliable for what concerns the 

avoidance of incorrect classification of malignant cases 

(miss rate), since the cost of a miss would be significantly 

higher than the cost of a false alarm (a benign case 

confused as malignant). In order to reduce the imbalance 

issue, various methods have been proposed along the last 

decade that use different strategies, ranging from 

undersampling, to oversampling and specific loss 

functions, but none of them have considered the high 

difference in cost between a miss and a false alarm. 

Contributions, in this paper, we deal with binary 

classification on mobile devices of dermoscopic images 

through transfer learning over the public image databases 

ISIC-2019 and ISIC-2020. In order to deploy accurate 

models for self-assessment of moles on smartphones 

equipped with custom dermoscopic lenses, we propose the 

following schemes for alleviating the class imbalance 

issues: 

• oversampling through data augmentation 

according to a radial blurring scheme, for 

modeling lens aberrations typical of low cost 

mobile dermoscopes. To our knowledge, it is the 
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first time that blurring methods are being used for 

improving training on dermoscopic images. 

• undersampling through iterative cleaning of the 

imbalanced dataset, where for each stage, we 

remove a portion of benign images, until reaching 

class balance, or even partial imbalance towards 

positive cases (malignant). 

• a novel custom loss function, obtained through 

cost weighting of a recall cross entropy loss, that 

we dub γ-RCEL, that drives learning towards a 

penalization of misses to reduce the false negative 

rate at cost of increasing the false positive rate. To 

our knowledge, it is the first time recall cross 

entropy is used for dermoscopy classification, and 

we prove that the additional cost weighting is 

beneficial for reducing significantly the number of 

malignant misses (false negative rate). 

Through preliminary experiments on EfficientNet 

architecture, we show how mixing and matching the 

proposed schemes can produce models with controlled 

miss and false alarm rates, in a way to deploy fast real-time 

models on mobile platforms. We finally demonstrate the 

proposed scheme on a real-time Android mobile prototype 

application using back camera equipped with a magnifying 

lens for automatic classification of moles.  

II. RELATED WORK 

The proposed framework deals with deep learning 

applied to classification of dermatoscopic skin images, the 

application of schemes for alleviating the class imbalance 

issues and modeling of lens aberration for  improving 

image classification. We don’t aim to provide here an 

extensive overview of related methods: we refer readers to  

comprehensive surveys of methods for deep learning based 

methods for skin image classification and 

segmentation [2–6] and for imbalanced data challenges in 

machine learning [7]. In the following we discuss the 

recent methods that are most closely related to our work. 

A. Deep Learning in Dermoscopy 

Skin lesion image datasets gained popularity in recent 

years with the successes of ISIC datasets and 

challenges [8]. Since the release of these public datasets, 

many architectures have been proposed for detecting 

melanoma from single dermoscopic images of moles [9–

12] for segmenting and extracting moles to reduce 

background noise and support shape and texture analysis 

[13], and for classification according to more elaborated 

taxonomies of potential skin lesions [14–16]. For what 

concerns melanoma detection, transfer learning based on 

convolutional neural network (CNN) is currently the most 

explored technology[10]: Raza et al. [11] recently 

proposed an ensemble of CNNs, Singh et al. [12] made an 

evaluation of various deep learning architectures for 

performing melanoma detection, Rajeshwari et al. [9] 

developed a modified Deep Neural Network with Horse 

Herd Optimization, and finally Elashiri et al. [17] 

proposed an ensemble of deep neural network modified 

with long short term memory. Cassidy et al. [18] recently 

provided an extended analysis of ISIC public datasets 

together with guidelines for filtering and removing 

duplicates and noise, and benchmarks. Following these 

guidelines, Pewton and Yoop [19] explore the Dark Corner 

Artifact (DCA) phenomenon within a curated ISIC image 

dataset by introducing new labels of image artifacts on a 

curated balanced version of the original data. In this work, 

since we are dealing with melanoma detection, we 

considered merging the binary classification datasets ISIC-

2019 [20] and ISIC-2020 [21]. 

For what concerns the technology, we consider transfer 

learning by using the popular Efficientnet Convolution 

Neural Network (CNN) architecture as feature extractor 

[22, 23] that we customize with two schemes for data 

imbalance management and a novel cost-based loss 

function. Very recently, accurate guidelines for evaluating 

Image-Based Artificial Intelligence Reports in 

Dermatology have been proposed, composed by a 

comprehensive checklist including items related to Data, 

Techniques,Tecnhical Assessment and Application [24]. 

In this manuscript, we tried to follow carefully the 

guidelines indicated in that report. 

B. Class Imbalance Alleviation Methods 

As machine learning and deep learning methods started 

to become popular, an important challenge emerged for 

“real world” applications:  how to obtain desired 

classification accuracy when dealing with data that have 

significantly uneven class distributions. The main 

challenge that machine learning community has been 

trying to solve is how to improve the prediction  on  the  

underrepresented  or  minority  classes  while managing 

the trade-off with false positives. To this end,  many 

solutions have been proposed, that range from sampling 

approaches to compensate for imbalance to new learning 

algorithms designed specifically for imbalanced data.  The 

sampling  approaches can be  subdivided  into two broad  

categories:  undersampling methods, consisting of 

removing the majority samples, and oversampling 

methods, that create new minority representatives from 

original data. 

Traditional undersampling techniques reduce to the 

same scale majority and minority classes in imbalanced 

data, by using strategies like clustering [25, 26] or instance 

selection [27] or density analysis [28]. Recently, Xie et 

al. [29] developed a strategy exploiting a sequence of 

density peaks to progressively extract instances from the 

majority classes of the imbalanced data. On the other side, 

the most popular oversampling method is Synthetic 

Minority Over-sampling TEchnique (SMOTE) [30] that it 

is based on generating examples on the feature space on 

the lines connecting a point and one its K-nearest 

neighbors. Various versions and modifications have been 

proposed along last decade: from methods for initial 

selection of instances to be oversampled [31], to methods 

exploring various type of interpolation considering 

Voronoi diagrams [32], or by pushing examples out of a 

sphere [33], or by coupling it with dimension reduction 

techniques [34]. Some strategies considered hybrid 

combinations of undersampling and oversampling: 

recently, Sowah et al. [35] derived a Hybrid Cluster-based 

Undersampling Technique (HCBST) that combines cluster 
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undersampling technique with an oversampling technique 

derived from Sigma Nearest Oversampling based on 

Convex Combination. Other methods tackle imbalance 

issue by deriving specific loss functions that try to preserve 

the minority class: for example, focal loss [36] weights the 

standard cross entropy loss function with a factor 

depending on the actual accuracy for each class in a way 

to increase the focus on wrongly classified examples [37]. 

Very recently, another loss based on recall have been 

proposed [38], that have been demonstrated to reduce the 

false negative rate in various kind of data. In this work, we 

exploit the Recall Cross Entropy loss, and we extend it by 

considering a weighting scheme taking into account the 

difference in cost between misses (not detected malignant 

cases) and false alarms (benign cases detected as 

malignant). 

C. Lens Aberration Modeling in Visual Computing 

Blur modelling is important in many visual computing 

applications, ranging from deblurring in high resolution 

imaging in application domains like astronomy, 

microscopy or computational photography [39] to 

photorealistic rendering for gaming and animation [40]. In 

most cases, the blur in images is originated by lens 

distortions and can be  characterized by a single Point-

Spread-Function (PSF). Blurring is then modeled by a 

convolution, that is used for developing efficient 

algorithms for blur simulation and removal that are based 

on numerical methods, linear approximations, piece-wise 

approximations or fast Fourier transforms [41]. Very 

recently, various methods for defocusing and deblurring 

through convolutional neural networks have been 

proposed [42]. On the other side, for what concerns lens 

simulation, and focus modelling, along last decade various 

methods for real-time rendering of various physical and 

geometrical lens effects using Graphic Processing Unit 

(GPU) [43–45]. Very recently, methods combining neural 

rendering and lens modelling have been proposed for 

generating high-resolution photo-realistic bokeh effects 

with adjustable blur size, focal plane, and aperture shape 

[46]. In this project, we considered the blurring effects due 

to magnifying lenses that are used during examination of 

skin lesions, to develop an augmentation scheme for 

reducing the imbalance in ISIC image collections. To this 

end, we modelled radial blurring through a linear iterative 

scheme. 

III. METHODS 

Our framework has the goal to train and deploy on 

mobile devices a binary classification model that is able to 

detect whether a mole acquired with a mobile camera 

equipped with a magnified lens is benign (B) or malignant 

(M). For training the classifier, we consider a generic 

model ℳ(Θ) that, given a picture I as input, computes a 

vector  𝑃𝐼  composed by two probabilities 𝑝𝐼
𝐵  and 𝑝𝐼

𝑀  of 

being benign or malignant. The optimal parameters Θ for 

the model are computed by minimizing a loss function  

ℒ(Θ) over a collection of 𝑁  labelled images 𝒯 =
{(𝐼𝑛 , 𝐶𝑛): 𝑛 = 1. . 𝑁}, where 𝐶𝑛 is the correct category for 

the image 𝐼𝑛(Benign B or Malignant M). For the public 

datasets available, the distribution of the classes is strongly 

imbalanced: the number of benign cases 𝑁𝐵  is 

significantly higher than the number of malignant cases 

𝑁𝑀(𝑁𝐵 ≫ 𝑁𝑀), and we can represent it through a balance 

ratio β =
𝑁𝑀

𝑁𝐵
  (parameter that we will use in the rest of 

manuscript for comparing the various oversampling and 

undersampling schemes presented). Now, in order to 

reduce the effects of the data imbalance, two strategies are 

possible:  

1) perform data modification by reducing the number 

𝑁𝐵 of benign cases or increasing the number 𝑁𝑀 of 

malign case; 

2) consider specialized loss functions that try to 

compensate for data distribution imbalance. In our 

framework we use an oversampling scheme for 

data management based on radial blurring, an 

undersampling scheme based on loss ranking and 

a custom cost-based loss function for controlling 

the miss rate. 

A. Framework Overview 

Fig. 1 depicts the various components of our transfer 

learning framework:  

• Data imbalance management: we started from 

public databases ISIC-2019 and ISIC-2020. We 

merged them by incorporating the malignant 

pictures of ISIC-2019 in the database ISIC-2020 in 

a way to partially reduce the imbalance (32,542 

benign images vs 5106 malignant). After that we 

split the database in training set (80% of data 

corresponding to 26,033 benign and 4,085 

malignant for a balance ratio 0 = 0.157) and 

testing set (20% of data corresponding to 6,509 

benign and 1021 malignant). This represents the 

baseline dataset for comparing the various data 

imbalance management schemes. In the following 

we will detail the strategy for imbalanced 

oversampling through blurring modeling, as well 

the filtering strategy for undersampling benign 

images. 

• Classifier training: we used a pretrained 

EfficientNet model for feature extraction [23]. We 

chose that family of Convolutional Neural 

Networks since they are considered the current 

state of the art for mobile inference, because of 

number of parameters, accuracy performance in a 

variety of classification tasks, and inference speed. 

We integrated the EfficientNet architecture in a 

classification network composed by a dense layer 

through FastAI framework, and we trained it by 

using a custom loss function, taking into account 

the characteristics of dermoscopic data (see Fig. 1). 

• Mobile application: we deployed the classification 

model in an Android application that uses the back 

camera equipped with a magnifying lens for 

acquiring high resolution skin pictures, and it is 

able to perform and show on the screen the results 

of real time inference in form of soft probabilities.  
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Figure 1. Mobile Dermatoscopy: for alleviating class imbalance in binary classification, we propose data management schemes based on blurring 

augmentation and iterative refining through loss ranking (left), and a cost-based recall cross entropy loss function for training a classification model 

based on EfficientNet (center). Finally, we deploy the model on mobile devices equipped with magnifying lens for real time inference (right). 

B.  Oversampling Through Blurring Model 

In order to oversample the original database and reduce 

the class imbalance in favor of malignant cases, we used a 

blurring augmentation scheme applied selectively together 

with rotation augmentation in a way to augment the 

number of malignant images at higher proportion with 

respect to benign cases. As blurring scheme, we 

considered an iterative radial blurring strategy, that 

considers linear shrink and expansion maps in both 

horizontal and vertical direction, by blending them for a 

specific number of steps. Specifically, given a generic 

image coordinate x  [0, w], we can define an expansion 

map ℎ𝑒(𝑥) = 𝑥 + 𝜌𝑒 (𝑥 −
𝑤

2
)  and a shrinking map   

ℎ𝑠(𝑥) = 𝑥 − 𝜌𝑠 (𝑥 −
𝑤

2
) where 𝜌𝑠 and 𝜌𝑒 are the blurring 

values. Then, we can define recursively the blurring 

process over an image 𝐼(𝑢, 𝑣) as 

𝐼𝑖(𝑢, 𝑣) =
1

2
(𝐼𝑖−1(ℎ𝑒(𝑢), ℎ𝑒(𝑣)) + 𝐼𝑖−1(ℎ𝑠(𝑢), ℎ𝑠(𝑣)))              (1) 

In total, four blurring values can be defined, two for the 

horizontal coordinate 𝑢 and two for the vertical coordinate 

𝑣, and various blurring effects can be achieved, able to 

model different lens distortions. In our case, for processing 

the dermoscopic images, we considered a single blurring 

parameter identical for shrink and expansion 𝜌 = 𝜌𝑒 = 𝜌𝑠, 

and we used OpenCv remapping and blending capabilities 

for implementing the blurring scheme. For what concerns 

the blurring steps, we used 5 five iterations for producing 

all results of this paper. 

Fig. 2 shows an example of the blurring scheme applied 

to a white dot representative of the Point Spread Function, 

with different blurring values 𝜌. 

 

     

Figure 2. Blurring effect: example of radial blurring applied to a white 

circular dots. Left: original image without blurring. Center: blurring𝜌 =
 0.01Right: blurring with 𝜌 = 0.02. 

For what concerns the augmentation strategy, we 

coupled blurring with rotation augmentation: for benign 

images we used blurring on top of flip images, while for 

malignant images we considered the three rotation cases 

(clockwise and anticlockwise 90-degree rotation plus 

flipping). In this way we could reduce the imbalance to 

50% of the original database: from the original merged 

training database, we got an augmented database 

containing 52,066 benign images and 16,340 malignant 

images, for a balance ratio β0
b=0.314. Fig. 3 shows some 

examples of blurring augmentation applied to benign and 

malignant images. 

 

Figure 3. Blurring augmentation: we apply blurring coupled with 

rotation augmentation to reduce class imbalance of 50% . Top row: 

blurring and flipping applied to a benign case. Bottom row: blurring and 
flipping applied to a malignant case. 

C.  Undersampling Through Iterative Cleaning Scheme 

In order to further reduce the imbalance, we considered 

a scheme for removing benign cases according to a 

partially trained model. Specifically, we used an 

EfficientNet-B0 model, and we started an iterative 

cleaning process composed by a number of steps S 

composed by the following operations: 

• train the classification model for a limited number 

E of epochs. 

• rank training images according to decreasing loss 

values. 

• remove the K benign images with the highest loss 

values. 

The number of Kand S was chosen in a way to reach 

balance in a limited number of steps, and the various 

databases with different balance ratio were considered for 

the various experiments. 

D. Cost-weighted Recall Cross Entropy Loss Function 

We considered a cost-weighted version of the recent 

Recall Cross Entropy Loss function [38]. We start from the 

general cross entropy loss, that on training data 𝒯 =
(ℐ𝓃, 𝒞𝓃)  represents how far is the current model from 

optimal detection: 

                ℒ𝒞ℰ = − ∑ log(𝑝𝐼𝑛

𝐶𝑛)                        𝑁
𝑛=1 (2) 

For the specific case of melanoma detection, it can be 

decomposed in two different contributions from benign 

and malignant images,  
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ℒ𝒞ℰ = − ∑ log(𝑝𝐼𝑛
𝑀)

𝑛:𝐶𝑛=𝑀

− ∑ log(𝑝𝐼𝑛
𝐵 )

𝑛:𝐶𝑛=𝐵

  

  = −𝑁𝑀 log(𝑝𝑀) − NB log(𝑝𝐵),                   (3) 

where 𝑝𝑀 and 𝑝𝐵 are the geometric mean probabilities for 

the training images to be respectively malignant and 

benign. 

In order to compensate for the imbalance between 𝑁𝑀 

and 𝑁𝐵 , various weighting strategies can be considered, 

ranging from the extreme solution named inverse cross 

entropy in which the frequency of the various cases is used 

to eliminate 𝑁𝑀 and 𝑁𝐵,  

ℒℐ𝒞ℰ = −
1

𝑁𝑀

∑ log(𝑝𝐼𝑛
𝑀)

𝑛:𝐶𝑛=𝑀

−
1

𝑁𝐵

∑ log(𝑝𝐼𝑛
𝐵 )

𝑛:𝐶𝑛=𝐵

 

           = − log(𝑝𝑀) − log(𝑝𝐵) ,                                  (4) 

up to focal loss, that tries to increase the focus on hard, 

incorrectly classified examples, 

                    ℒℱ = − ∑ (1 − 𝑝𝐼𝑛

𝐶𝑛)
δ

log(𝑝𝐼𝑛

𝐶𝑛)𝑁
𝑛=1 ,           (5) 

without distinguishing between malignant and benign 

cases. The Recall Cross Entropy Loss is a less aggressive 

version of Inverse Cross Entropy since the benign and 

malignant contributions are weighted with the respective 

false detection rate: 

ℒℛ𝒞ℰ = −𝐹𝑀 ∑ log(𝑝𝐼𝑛
𝑀)𝑛:𝐶𝑛=𝑀 − 𝐹𝐵 ∑ log(𝑝𝐼𝑛

𝐵 )𝑛:𝐶𝑛=𝐵 , (6) 

where 𝐹𝑀  is the false detection rate for malignant cases 

(miss rate), and 𝐹𝐵  is the false detection rate for benign 

cases (false alarm rate). In our case, since we want to take 

into account the difference in cost between a false 

detection in case of malignant with respect to a false 

detection in case of benign, we introduced an additional 

weight γ representing the cost ratio between a miss and a 

false alarm (that can range between some multiples up 

10,000 times, according to the desired miss rate). 

In this way we obtain the proposed cost-weight recall 

cross entropy loss function: 

ℒγℛ𝒞ℰ = −𝛾𝐹𝑀 ∑ log(𝑝𝐼𝑛

𝑀)𝑛:𝐶𝑛=𝑀 − 𝐹𝐵 ∑ log(𝑝𝐼𝑛

𝐵 )𝑛:𝐶𝑛=𝐵    (7) 

In Section IV we show how an adequate the choice of 𝛾 

can drive the training to drastically reduce the miss rate at 

cost of augmenting the false alarm rate. 

E.   Implementation 

We implemented the framework in Python by using 

Jupyter dockers, PyTorch for the implementation of the 

loss functions, OpenCV for the implementation of the 

blurring method, and FastAI for training and testing the 

accuracy of the method. We deployed the trained model to 

Android mobile devices by translating them into tflite, and 

we integrated them in a real-time app developed in Kotlin. 

The real-time application uses the back camera for 

acquiring nevi pictures and shows the inference results on 

the smartphone screen. We tested the model in our lab by 

using a smartphone Samsung Galaxy A51 equipped with a 

magnifying lens Lifetrons Macro 5X. Fig. 4 shows some 

examples of inference for self-assessment of moles. 

F. Data Preparation 

We started with a merged version of ISIC-2019 and 

ISIC-2020, that we call ISIC-merge, that we split to 

training and testing data. The same testing data was used 

for all reported experiments. The original images were 

downsampled to 320 × 320 resolution to fit with 

EffficienNet-B0, EfficientNet-B2, EfficientNet-Lite0 and 

EfficientNet-Lite2 architectures.   

 

   

Figure 4. Real-time mobile application: We tested our classification 

model in real-time using a mobile (Samsung Galaxy A51) equipped with 
the lens (Lifetrons Macro 5X), where the application is used for self-
check of moles. 

For what concerns the blurring scheme, we applied it by 

using random blurring values between 0.005 and 0.02, in a 

way to obtain a new dataset called ISIC-blur. To both of 

them we applied the cleaning scheme, iteratively in a way 

to obtain a collection of datasets with different balance 

ratio, by using the standard cross entropy loss function for 

partially train a model and loss ranking for selecting the 

benign pictures to remove. For each step, the model was 

trained for four epochs.  

For ISIC-merge, we refined the original dataset in five 

steps, by removing 6k benign images for each step, and 

passing from balance 𝛽0 = 0.157 to balance 𝛽5 = 1.99 in 

the final step (4073 malignant pictures and 2045 benign 

pictures). For ISIC-blur, we refined the original dataset in 

four steps by removing 12k benign pictures per step, and 

obtaining various daatabases with different balance, from 

𝛽0
𝐵 = 0.314 to 𝛽4

𝐵 = 3.225 (16,340 malignant pictures and 

5066 benign pictures). 

G.  Training and Evaluation Setup 

For our experiments we considered four EfficientNet 

models: B0, B2, Lite0 and Lite4. We performed all 

experiments on a machine running Ubuntu 20.04 and 

equipped with a Nvidia RTX 2080 with 11GB RAM. For 

fairness, we trained all the models with varying conditions 

for the same number of epochs (10 for all experiments), 

and same initial learning rate r = 10e 𝜆𝑟 = 10e−4, and 

batch size 𝑏𝑠 = 128 for EfficientNet-B0 and bs  for 

EfficientNet-B2. For training, we used the cyclical 

learning rate proposed by Smith [47], and implemented in 
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FastAI. For the evaluation, we considered the testing data: 

since we are interested in comparing the miss rate (false 

positive rate) with respect to the number of benign misses 

(False negative rate), to better evaluate the trade-off we 

decided to create a cartesian scatter plot containing both 

metrics, in a way to have a clear idea of the trade-off 

reached by the models between misses and false alarms. In 

these false alarm rate versus miss rate performance plots, 

points closer to the origin indicate better performance.  

Moreover, we also represent performances as error rates 

for malignant and benign cases as function of balance ratio. 

TABLE I.  MODEL ACCURACY: TABLE REPORTING PERFORMANCE METRICS FOR EXPERIMENTS IN WHICH WE OBTAINED A BALANCE ACCURACY 

GREATER THAN 94% 

Model Loss Function No. Ben No. Mal Acc Bal. Acc ROCAUC Ben. Recall Mal. Recall 

EfficientNet B2 RCEL (𝛾 = 10.0) 26033 4085 95 94 98 96 93 

EfficientNet B2 RCEL (𝛾 = 1.0) 14033 4085 98 94 98 99 90 

EfficientNet B0 RCEL (𝛾 = 1.0) 26033 4085 98 94 98 99 89 

EfficientNet B0 RCEL (𝛾 = 10.0) 26033 4085 97 94 98 97 91 

EfficientNet B2 Focal Loss (𝛾 = 2.0) 26033 4084 98 94 99 100 89 

EfficientNet B2 Recall Loss 26033 4085 98 94 98 99 89 

EfficientNet B2 Cross Entropy Loss 2045 4073 95 94 98 95 93 

EfficientNet B2 Recall Loss 2045 4073 96 94 98 97 91 

EfficientNet B0 Cross Entropy Loss 26033 4085 98 94 98 100 88 

EfficientNet B0 Focal Loss (𝛾 = 1.0) 26033 4085 98 94 98 100 89 

EfficientNet B0 Recall Loss 2045 4073 96 94 98 96 92 

EfficientNet B0 Focal Loss (𝛾 = 1.0) 8033 4085 98 94 98 99 89 

EfficientNet B0 Focal Loss (𝛾 = 2.0) 8033 4085 98 94 98 99 89 

EfficientNet B0 Recall Loss 8033 4085 97 94 98 99 90 

EfficientNet B0 Focal Loss (𝛾 = 2.0) 14033 4085 98 94 99 100 89 

EfficientNet B0 Recall Loss 14033 4085 98 94 98 99 89 

EfficientNet B0 Cross Entropy Loss 15066 16340 97 94 98 98 91 

EfficientNet B0 Focal Loss (𝛾 = 1.0) 15066 16340 97 94 98 98 91 

EfficientNet B2 Cross Entropy Loss 52066 16340 98 95 98 99 90 

EfficientNet B2 Focal Loss (𝛾 = 1.0) 52066 16340 98 94 98 99 89 

EfficientNet B02 Focal Loss (𝛾 = 2.0) 52066 16340 98 95 99 99 90 

EfficientNet B02 RCEL 52066 16340 97 95 99 98 91 

EfficientNet B02 Cross Entropy Loss 15066 16340 96 94 98 97 91 

EfficientNet B2 Focal Loss (𝛾 = 1.0) 15066 16340 97 95 99 98 93 

EfficientNet B2 RCEL 15066 16340 97 97 99 98 97 

EfficientNet B2 RCEL 𝛾 = 1.0) 15066 16340 96 95 99 97 92 

EfficientNet B2 RCEL 𝛾 = 10.0) 15066 16340 95 95 99 95 94 

EfficientNet Lite0 Recall Loss 26033 4085 98 94 98 99 89 

EfficientNet Lite4 Cross Entropy Loss 26033 4085 98 94 98 100 88 

 

With this training and evaluation setup, we compared 

the performances of models obtained by training different 

EfficientNet architectures (B0 and B2), datasets with or 

without blurring augmentation, and with different balance 

ratio, and finally models trained with different loss 

functions and different set of parameters (for focal loss and 

our cost-weighted loss). 

IV. RESULTS 

We carried out a total number of 144 experiments with 

various conditions: usage or not of blurring augmentation, 

different balance ratios, different EfficientNet 

architectures, different loss functions. For what concerns 

the standard evaluation metrics, we obtained the best 

performing model under the following conditions: 

architecture EfficientNet-B2, dataset with blurring 

augmentation and cleaned up to almost perfect balance 𝛽 = 

1.084, and RecallCrossEntropy as loss function with 𝛾 = 1. 

The performances are the following: accuracy 96.9%, 

balanced accuracy 98%, ROCAUC = 0.98, benign recall 

97.7%, malignant recall 97.2%. As reference, Table I 

shows the performance metrics for the best trained models 

with the balance accuracy higher than 94%. Compared to 

state of the art methods, our results are consistent with 

results obtained by the most recent transfer learning and 

ensemble methodologies [48]. 

TABLE II.  COMPARISON AND ABLATION STUDY: WE COMPARE 

PERFORMANCES OF OUR MODELS WITH RESPECT TO MOST RECENT 

STATE OF THE ART METHODS, AND ACCORDING TO THE VARIOUS CLASS 

IMBALANCE SCHEMES PROPOSED. DATASET: ISIC 2020 

Method Acc 
Ben 

Recall 
Mal    

Recall 

Kaur et al. 2022 [49] 0.904 0.904 0.903 

Vaiyapuri et al. 2022 [50] 0.960 0.961 0.959 

BL [ours] 0.983 0.999 0.880 

BL + RL (𝛾 = 1) [ours] 0.977 0.989 0.892 

BL + RL (𝛾 = 10) [ours] 0.953 0.958 0.930 

BL + BLUR [ours] 0.979 0.990 0.904 

BL + UNDER [ours] 0.974 0.986 0.903 

BL + BLUR + UNDER [ours] 0.965 0.973 0.914 

BL + BLUR + RL (𝛾 = 1) [ours] 0.975 0.984 0.913 

BL+BLUR+RL (𝛾= 10) [ours] 0.944 0.950 0.932 

BL + UNDER + RL (𝛾 = 1) [ours] 0.961 0.968 0.913 

BL + UNDER + RL (𝛾 = 10) [ours] 0.945 0.944 0.931 
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BL + BLUR + UNDER + RL (𝛾 = 1) 0.969 0.977 0.972 

BL + BLUR + UNDER + RL (𝛾 = 10) 0.934 0.937 0.927 

 

Direct comparison is difficult, since labeled testing data 

is not available, but according to our splitting strategy, the 

models obtained with our framework significantly 

outperform last published methods in terms of accuracy, 

benign recall, and malignant recall. Table II shows a direct 

comparison to Kaur et al. [49] and Vaiyapuri et al. [50], 

that are currently the most performing methods on ISIC 

2020 dataset. 

On the same table we provide an ablation study for 

highlighting the contributions of the proposed class 

imbalance management schemes, where it appears evident 

how the composition of the various schemes, while slightly 

reducing the overall accuracy and the benign recall, 

significantly increases the malignant recall. In the table, 

BL is the baseline obtained with an EfficientNet-B2 

architecture, and a Cross Entropy loss function, while 

BLUR, UNDER, and RL denote respectively the blurring 

augmentation scheme, the iterative undersampling scheme, 

and the cost-weighted recall loss function. In the following 

we evaluate separately the effects of the data management 

schemes and the various loss functions with respect to 

malignant miss rate and benign false alarm rate. 

 

  
(a)                                                        (b) 

Figure 5. Data management performance: both blurring augmentation 

and loss-based cleaning are beneficial for reducing the number of 

malignant misses. Left: miss rate versus false alarm rate. Right:  error 
rates as function of balance ratio. 

 

A. Data Management Experiments 

First of all, we evaluate the effects of blurring 

augmentation, together with the cleaning scheme for 

EfficientNet-B0 and EfficientNet-B2 architectures trained 

with the standard cross entropy loss function. 

Fig. 5 shows the performance plots for the 

experiments done with the baseline dataset and the blur 

augmented dataset, with different balance ratios and 

different EfficientNet architectures (B0 and B2). From 

these performance plots we gather the following insights: 

• According to Fig. 5(a), the change of CNN architecture 

does slightly affect overall performance (however, we 

did not test yet the highest versions of EfficientNet 

family for resource limitation constraints), indicating 

that light models that can be deployed on mobile devices 

are adequate for the target detection task; 

• According to Fig. 5(b), the usage of blurring 

augmentation consistently improves the false malignant 

rate (pink curve on the right is below the red one) at the 

cost of slightly increased false benign rate (light green 

curve above dark green one); 

• according to Fig. 5 right, miss rate monotonically 

decreases as function of balance ratio, concurrently with 

the increase of false alarm ratio (especially for database 

with blurring augmentation).  

From these data management experiments, it appears 

clear that the usage of blurring augmentation together with 

loss-based undersampling are beneficial for reducing the 

malignant misses at the cost of increasing the number of 

false alarms. 

B  Loss Functions Comparison 

After data management experiments, we compared the 

performances obtained with different loss functions: we 

considered standard cross entropy, focal loss [36] with 𝛿 

=1, 𝛿 = 2 recall cross entropy loss [38], and the proposed 

cost-weighted recall cross entropy with 𝛾 = 10, 𝛾 = 100. 

Fig. 6 (a) shows the false alarm rate versus miss rate plot 

for the various losses on EfficientNet-B2 and the blurring 

augmented dataset with different balance ratios. It appears 

evident that both Focal Loss and Recall Cross Entropy are 

beneficial for all balance conditions, while our cost 

weighted loss appears particularly adequate for controlling 

the miss rate (higher is the chosen cost value 𝛾, and lower 

is the miss rate obtained). The effect on the control of the 

miss rate is highlighted in Fig. 6(b):  the miss rate is 

monotonically decreasing for all loss functions, however 

the original formulation of Recall Cross Entropy does not 

appear to be particularly beneficial for high balance ratios 

(pink line in Fig. 6), while it is beneficial for overall 

performance in case of perfect balance. 

 

  
(a)                                                        (b) 

Figure 6. Loss functions performance: the proposed cost-weighted 

recall cross entropy loss is able to provide a trade-off between a 
significantly reduced miss rate and an increased false alarm rate.Left: 

miss rate versus false alarm rate. Right: malignant miss rates as function 

of balance ratio. 

V.  CONCLUSIONS AND FUTURE WORK 

We presented a framework for deploying mobile 

applications for real-time melanoma detection on 

smartphones equipped with commodity magnification 

lenses. Our framework is using a combination of standard 

ISIC datasets for training binary classification models 

based on pretrained EfficientNet convolutional neural 

networks. We alleviate the class imbalance issue by using 

a combination of blurring augmentation that is also able to 

model the aberration originated by distortion in 

magnifying lenses, a undersampling scheme using loss 

ranking, and a custom loss function obtained by 

customizing a recall cross entropy with a cost weight 

representing the difference in cost between a miss (not 

detected malignant case) and a false alarm (not detected 

benign case). As future work, we plan to extend the model 
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with more sophisticated detection based on different 

taxonomy of skin lesions, and to start evaluating and 

testing the model on the wild and on clinical setting with 

the support of expert dermatologists. Moreover, we plan to 

include in the model chromatic aberrations, and to test the 

framework with other lenses and with other deep learning 

architectures. 
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