
Mobile Surveillance Siren Against Moving

Object as a Support System for Blind People

David H. Hareva*, Sebastian A., Aditya R. Mitra, Irene A. Lazarusli, and Calandra A. Haryani

Universitas Pelita Harapan, Tangerang, Indonesia; Email: sa70015@alumni.uph.edu (S.A.),

aditya.mitra@uph.edu (A.R.M.), irene.lazarusli@uph.edu (I.A.L.), calandra.haryani@uph.edu (C.A.H.)

*Correspondence: david.hareva@uph.edu (D.H.H.)

Abstract—Visually impaired people can use smartphone

navigation applications to arrive at their destination.

However, those applications do not provide the means to

detect moving objects. This paper presents an Android

application that uses the smartphone’s camera to provide

real-time object detection. Images captured by the camera

are to be processed digitally. The model then predicts objects

from the processed image using a Convolutional Neural

Network (CNN) stored in mobile devices. The model returns

bounding boxes for each of the detected objects. These

bounding boxes are used to calculate the distance from the

object to the camera. The model used is SSD MobileNet V1,

which is pre-trained using the Common Objects in Context

(COCO) dataset. System testing is divided into object

distance and accuracy testing. Results show that the margin

of error for calculating distance is below 5% for distances

under 8 meters. The mean average precision is 0.9393, while

the mean average recall is 0.4479. It means that the system

can recognize moving objects through the embedded model

in a smartphone.

Keywords—Convolutional Neural Network (CNN), deep

learning, object distance, object detection, support system for

blind people

I. INTRODUCTION

According to a report from the World Health

Organization, there are about one billion people in this

world who are visually impaired. Visual impairment can

be caused by various things, such as untreated presbyopia

(826 million), cataracts (65.2 million), glaucoma (6.9

million), and other causes [1]. However, just because

people are visually impaired does not mean they cannot

use smartphones to do daily activities. Those who are

visually impaired can use smartphones via the screen

reading feature. Apple mobile phones have voiceover,

while Android phones have TalkBack [2]. Using

smartphones, visually impaired people can use navigation

applications such as Google Maps or Waze to reach a

destination. Unfortunately, these applications are not able

to recognize moving objects. Then one possible solution is

to develop a system that can detect moving objects through

their smartphone camera. Many mobile applications aim to

help blind people, but they only provide directions to blind

 Manuscript received December 3, 2022; revised March 15, 2023;

accepted May 1, 2023.

people via voice and GPS or require ultrasonic sensors to

detect objects in front of the user. This system allows users

to detect moving objects in front of them to avoid accidents,

especially in crowded places. Upon receiving input from

the smartphone camera, the system performs image

computation. TensorFlow Lite will detect objects on the

processed image [3]. As the output, the system will

produce a series of frames containing detected moving

objects in the form of a video stored in the phone device.

When a moving object is close enough to the user, the

system will generate an audible warning to the user.

This research aims to create a system that alerts visually

impaired persons when an object moves in front of them.

Moving object detection is performed soon after the

system receives images from the smartphone’s back

camera. Image processing and object detection will be

fully processed on the smartphone. The user will be

warned through the text-to-speech feature when any object

moves in front of them. In addition, the system will emit a

siren sound to alert people around the user if there are

moving objects that can hit the user with specific risks. It

is hoped that this mobile application provides benefits for

visually impaired people by guiding them to reach their

destination safely.

II. RELATED WORKS

Various applications have been developed for blind

people. A few example applications developed for

assisting visually impaired people are Blind Square, Be

My Eyes, and Aipoly Vision. Blind Square is a navigation

application for the visually impaired with additional

features such as describing the surrounding road

conditions and announcing when the user is at a crossroads

[www.blindsquare.com]. Be My Eyes is an application

that connects visually impaired people with volunteer

helpers via video calls to assist visually impaired people in

navigation. [www.bemyeyes.com]. Aipoly Vision is an

application that uses the camera to detect any object simply

by pointing at the camera and pressing a button on the

application [https://www.aipoly.com/].

Nevertheless, currently, no applications can provide

real-time detection of objects and distance information

through the camera. Aipoly Vision can only detect one

Journal of Image and Graphics, Vol. 11, No. 2, June 2023

17010.18178/joig.11.2.170-177doi:

mailto:sa70015@alumni.uph.edu
mailto:aditya.mitra@uph.edu
mailto:irene.lazarusli@uph.edu
mailto:calandra.haryani@uph.edu
mailto:david.hareva@uph.edu

image and requires a continuous button press which may

be inconvenient or practical for the user. Be My Eyes

requires volunteers who are willing to help. Further, this

application is not equipped with a feature that allows

object detection [4]. To help in processing object detection

by capturing images from a smartphone’s camera is

TensorFlow Lite. TensorFlow Lite is a TensorFlow

application for lightweight use on mobile phones and

embedded systems [5]. However, only SSD (Single Shot

Multi Box) models are currently supported by TensorFlow

Lite. Models such as Faster-RCNN are not supported yet,

so the performance of SSD and Faster-RCNN cannot be

compared [6]. Currently, there is no other way to detect the

moving object solely by images from the camera. The

developed system must quickly detect an object from

video image pieces. Based on tests conducted by the

TensorFlow team, MobileNet’s speed for predicting a

single frame is 30 milliseconds [7]. If one frame takes 30

milliseconds, MobileNet will perform a maximum of 33

detections in one second. Of course, the actual system

performance depends on the mobile hardware used.

However, this is one way that can be used to process object

detection quickly.

III. METHODOLOGY

The system that will be implemented is an Android

application called “Blindness Path Guidance”. Through

Android, app developers can access the phone’s hardware,

such as the camera, WiFi connection, cellular network, and

data on the phone. Every application developed for

Android needs access permissions in three threat levels [8]

that are declared in the app’s manifest file [9]. First, they

are standard permission that does not harm the user; for

example, is asked to change the time zone. Signature

permission regulates access to the most dangerous

permissions, such as deleting other applications. This

permission is only granted to pre-installed apps by the

phone manufacturer [8]. Last is Malicious permission,

which can access users’ personal information such as

reading the contact list or accessing the camera. The user

must grant malicious permissions during runtime to

operate [9].

Human visual senses can be modeled using computer

vision to automate the recognition of objects that are seen

around. For example, text-to-speech, automated car

parking, accessing information by reading QR codes or

moving object detection [10]. Most computer visions use

something called Convolutional Neural Network (CNN).

It is a neural network often used for high-dimensional data,

such as images and videos. Neocognitron is a sample of

the CNN model proposed by Kunihiko Fukushima in 1982.

It is inspired by the work of Hubel and Wiesel based on

how nerves work in the brain and consist of many

layers [11]. A model of CNN used machine learning to

develop algorithms by studying specific data patterns. The

machine can make predictions from the patterns learned by

assuming that the existing data will not differ much from

the data at the time of collection [12]. Deep learning is a

subset of machine learning that learns data through

different representations. Deep learning using images can

be applied to recognizing objects or recognizing certain

features, such as recognizing humans, bicycles,

motorbikes, or others. Typically, deep learning makes use

of artificial neural networks [13].

Improving accuracy in recognizing objects in the

selected image needs image processing. This can be in the

form of noise filtering, converting color images to

monochromatic, changing image size, location of objects

in the image, and much more [14, 15].

MobileNet is a type of CNN model designed by a team

of researchers from Google to apply computer vision on

mobile phones and embedded systems. The purpose is for

real-world tasks that require efficient models with limited

computational resources, such as building robots,

augmented reality, and autonomous cars. From the results

of tests conducted by Andrew G. Howard and his team of

researchers, it can be seen in Table I that MobileNet has

similar accuracy to VGG and Inception V2 but with far

fewer parameters [16].

There are several methods to get distance from an object

to the camera, but the best method to obtain the distance

using a single image is by using perspective. The

information needed to calculate the distance from the

object to the camera is the lens’s focus, the sensor’s height,

the height of the object in the image, the height of the

image, and the actual height of the object. The formula for

calculating the distance can be seen in Eq. (1). The unit of

the object’s height will determine the object’s distance

from the camera [17].

TABLE I. COMPARISON OF MOBILENET TO VGG AND INCEPTION V2

Framework

Resolution
Model mAP

Billion Mult-

Adds

Million

Parameters

SSD 300

deeplab-VGG 21.1% 34.9 33.1

Inception V2 22.0% 3.8 13.7
MobileNet 19.3% 1.2 6.8

Faster-
RCNN 300

VGG 22.9% 64.3 138.5

Inception V2 15.4% 118.2 13.3

MobileNet 16.4% 25.2 6.1

Faster-
RCNN 600

VGG 25.7% 149.6 138.5

Inception V2 21.9% 129.6 13.3

MobileNet 19.8% 30.5 6.1

𝐷 =
ℎ𝑟𝑒𝑎𝑙 𝑥 𝑓 𝑥 ℎ𝑖𝑚𝑎𝑔𝑒

ℎ𝑠𝑒𝑛𝑠𝑜𝑟 𝑥 ℎ𝑜𝑏𝑗𝑒𝑐𝑡
 (1)

where, ℎ𝑟𝑒𝑎𝑙: actual object height, 𝑓: focal length (mm),

ℎ𝑖𝑚𝑎𝑔𝑒: image height (pixel), ℎ𝑠𝑒𝑛𝑠𝑜𝑟: sensor height (mm),

and ℎ𝑜𝑏𝑗𝑒𝑐𝑡: object height in picture (pixel).

However, getting the actual height of the detected object

is difficult, so the value of the actual height of the object is

the average height of the detected object. For example, the

average human height in Asia is 1.58 meters [18], so that

number will replace the actual object height.

Precision is the chance that the system predicts the

correct prediction, while Recall is the chance the system

can predict an object. The formula for Precision can be

seen in Eq. (2), while the formula for Recall can be seen in

Eq. (3).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3)

Journal of Image and Graphics, Vol. 11, No. 2, June 2023

171

where, TP: True Positive, FP: False Positive, and FN:

False Negative

Precision and Recall will result in a number between

zero and one. Ideally, Precision and Recall should be high.

If the Precision is high, but Recall is low, many predicted

objects are correct, but many objects are not detected. If

the Recall is high, but the Precision is low, it means many

objects were predicted correctly, but there are many wrong

predictions. After calculating the Precision and Recall for

each type of object detected, the Precision and Recall

values can be added and divided by the number of object

types to obtain the mean average Precision and mean

average recall [19].

IV. SYSTEM DESIGN

The application begins by loading the model embedded

on a mobile phone. After the model is successfully loaded,

the mobile phone camera records a video, then the

application will capture image frames from the video, and

the image processing stage begins. This stage produces

images with a size of 300 × 300 pixels. The results are then

used as input for the object recognition stage. The object

recognition stage is carried out using a model loaded in the

system’s early stages. The model will produce output in

the form of a bounding box that stores information on the

location and type of objects. The system then calculates the

object’s distance from the camera using the perspective of

a single image in Eq. (1). If any objects are detected, the

system will then give a warning to the surrounding by

sirens and information to the user.

A. Model Training

Before creating the system, the model that will be used

to detect objects needs to be trained using the data that has

been prepared. The base model that is going to be used for

the system is ssd_mobilenet_v1_coco. After the computer

has finished installing TensorFlow for training, the next

step is to label the training data. The labelImg program will

be used to label images. LabelImg is a tool that make it

very easy to annotate image (https://pypi.org/project/

labelImg). After labeling all training data, labelImg will

generate an xml file per image. Then, the data for training

and testing will be separated. Then, the training and testing

data need to be converted into a record file. The conversion

is done using a script provided by TensorFlow. After the

conversion is complete, model training can be started.

The number of training epochs can be calculated by the

batch size multiplied by the number of steps divided by the

number of images used for training. The batch size used is

two, the number of images is 300, and the number of steps

is 18,000. If counted, this means the model trained for 120

epochs.

B. Testing

Testing will be done through distance testing and

accuracy testing. Distance testing will be done by placing

the smartphone at a height of one meter above the ground,

then someone will walk towards the cell phone. A

measuring tape will be used to measure the original

distance. Distance measurement starts at 8 meters and ends

at two meters. To test the performance of the system for

measuring distance, error percentage will be used. The

smaller the error percentage, the more accurate the system

is in calculating distance. The error is calculated by taking

the difference between the calculated distance and the

original distance and dividing it by the original distance.

Multiply the number by 100 to get the error as a percentage.

The accuracy test will be done by taking a recording of the

system using a smartphone while walking in a crowd, for

two minutes. The recording will be checked every second

for true positive, false positive, false negative.

• True Positive (TP) is when an object that was

detected correctly by the system.

• False Positive (FP) is when the system to detect an

object, even though there are no objects in the

detected area.

• False Negative (FN) is the system does not detect

an object, even though there should be an object

detected.

The sum of the TP, FP, and FN collected within the two-

minute period will be used in calculating system

performance. The units used to evaluate system

performance are Precision and Recall. The method of

calculating precision and recall can be seen at Eq. (2) and

(3).

V. IMPLEMENTATION AND TESTING

The system will be created for Android using the Kotlin

programming language. The system is divided into several

stages, namely accessing the camera, Android image

processing, object recognition, calculating object distances,

sirens, and text-to-speech as illustrated on Fig. 1.

Figure 1. Model of blindness path guidance.

A. Accessing the Camera

The system requires camera access to capture images.

To gain camera access, the system will first ask the user

for permission to use the camera. Helper code for

managing camera permissions is divided into four

functions. Each function has its own role that can be called

on the main logic of the system, namely:

• hasCameraPermission, whose role is to check

whether the permission for camera access has been

granted or not. Returns true if given and returns

false if not already provided.

• requestCameraPermission, whose role is to

request camera access permission to the user. This

function is called when the user has never or

refused to provide camera access to the system.

The system can request access permission for the

camera by writing Manifest.permi

ssion.CAMERA in manifest.xml.

• shouldShowRequestPermissionRationale,

whose role is to check whether a permission has

been granted or not. This function returns true if

Journal of Image and Graphics, Vol. 11, No. 2, June 2023

172

https://pypi.org/project/

the system never asked for permission or asked for

permission but was denied, and false when the user

refuses with the option not to ask again. This

function is needed to check when the user presses

the button not to ask again, so that the system can

show an alternative screen if needed.

launchPermissionSettings, which moves the

active screen to the phone settings screen. This

function is required when the user presses the

button to deny and never ask again when

requesting camera access. The system moves the

user to the settings screen so that the user can grant

access manually.

The application interface when requesting camera

access to the user can be seen in Fig. 2.

Figure 2. Application interface when asking for permission.

B. Android Image Processing

The code to receive an image from a mobile phone

camera is a callback that is called by using

setOnImageAvailable Listener. When the image is

ready, the code inside the callback will be executed. By

calling acquireLatestImage, the latest image will be

received by the system. The received image is an object

with the class android.media.Image, with YUV color

formatting.

The input from TensorFlow Lite only accepts

information in RGB color format, so every pixel in the

received image needs to be converted to RGB. The

conversion process to RGB is carried out by separating the

YUV information into three parts, namely Y (brightness),

U (blue projection), and V (red projection). For each pixel

in the received image, the Y, U, and V information are

separated, then converted to RGB color format via the

YUV2RGB function.

Android does not provide a function for converting from

YUV to RGB. An additional function is required to

convert color format from YUV to RGB. The YUV2RGB

function accepts the Y, U, and V values of a single pixel

and then returns the pixel values in RGB color format. In

general, conversion from YUV to RGB requires

multiplying by non-integer numbers. However, the input

that TensorFlow Lite wants is an 8-bit integer. To solve

this, the YUV2RGB function multiplies by a large number,

then clamps the pixel value between 0 and 128.

TensorFlow Lite accepts an 8-bit number for each R, G,

and B value of the pixels. In hexadecimal form, the RGB

color format has the highest value of 0xff or 255 for each

color. The red, green, and blue values can then be mixed

to get the desired color. For example, the representation of

yellow (red mixed with green) is 0Xffff00. The first ff

value is the maximum red color, the second ff is the

maximum green color, and the 00 value at the end is no

blue mixture at all. Through the representation in

hexadecimal, R, G, and B information can be mixed and

separated easily.

C. Object Detection

After processing the image digitally, the application

needs to extract the pixels from the image as input. To

simplify the application, object detection is performed on

a single function that accepts a 300 × 300 pixels bitmap

and returns a list of objects in the form of a Recognition

class. Recognition is a self-made class that stores three

variables, namely title, confidence, and

location of the object.

• Title stores the detected object’s name (human,

motorcycle, or bicycle).

• Confidence stores the percentage of confidence

that an object is true, with 100% being very sure

and 0% being unsure.

• Location stores the location of the detected

object in rectangular coordinates.

The contents of the function can be broken down into

three important parts, namely:

1. The process of extracting pixel values from the

bitmap by calling the built-in function getPixels.

getPixels is a function that fills the array in the

first argument. In this case, getPixels will fill

the array used as input for TensorFlow Lite. The

pixel information is separated into red, green, and

blue via conversion to hexadecimal. The result will

be a byte buffer with size 300 × 300 × 3.

2. The process of preparing the input and output,

which are included with object detection by calling

the runForMultipleInputsOutputs function.

The function accepts one input array and four

output arrays. The input array contains the images

that will be detected, but in this case the input array

only contains the most recent image. The four

output arrays consist of location, object type,

confidence percentage, and number of detected

objects.

3. The process of converting the results of object

detection into the Recognition class so that it is

more easily recognized by the system. The model

used has limitations in recognizing a maximum of

10 objects in one image. However, the number of

detected objects is not always certain. If less than

10 objects are detected, the contents of the array for

the remaining indexes will be empty. The next step

will be converting the detected objects into a

Recognition class and returning a list with no

empty objects. This makes it easier for the

application because it does not have to check

whether an element in the original output array has

a value or not. By using the Recognition class,

calling the object location or object type can be

done by accessing the member of the object’s class.

Journal of Image and Graphics, Vol. 11, No. 2, June 2023

173

D. Calculating Object Distance

First, for each detected object, it is necessary to see the

percentage of confidence to prevent wrong detection in the

image. Objects with a low percentage of confidence are

ignored. The minimum recommended confidence to

reduce false positives is 60% [1]. For each detected object,

height information in pixels is required to calculate the

object’s distance to the camera. Other information is also

required, such as the image size, the focal length of the

camera, the size of the camera sensor, and information

regarding the average height of the detected object.

• The size of the captured image can be obtained

simply

• The camera sensor size can be obtained by

retrieving the SENSOR_INFO_PHYSICAL_SIZE

info from the CameraCharacteristics class.

• The object’s average height information is hard

code declared at the start of the system. The

average height value per object is obtained by

searching publicly available information and can

be replaced when there is newer information.

When all the information has been collected, the

object’s distance from the camera can be calculated using

Eq. (1). Apart from calculating the distance, the system

also checks whether there are objects that are close to the

user. The minimum distance can be changed to adjust it to

be further or closer.

E. Siren and Text-to-Speech

For each object detected by TensorFlow, the object
name is translated into Indonesian, then the distance
information is stored. After saving the object’s location
information, the system will shorten the spoken text by
saying the object type at the beginning, then combine all
the detected distances for that object type. An example is
the system would shorten “Person 5 meters Person 7
meters” to “Person 5 meters 7 meters”. Siren and Text-to-
Speech cannot be played at the same time. The system
needs to decide whether to sound the siren or turn on Text-
to-Speech. Based on the closest distance that has been
determined when calculating the distance of all objects, the
system will determine the source of sound output, namely
from connected headphones or from the speaker of a
cellphone. To control the sound output, an object with
access to Android’s audio system is needed. The
audioManager variable is an object with the class
android.media.AudioManager, which controls the

sound source. To turn on the speaker on a mobile phone,
the value of isSpeakerphoneOn must be true, and the
mode must be MODE_IN_COMMUNICATION.

F. Results of System Testing

System testing is divided into distance testing and
accuracy testing. Distance testing is done by using a
measuring tape to get the real distance. The distance
calculated by the system will be compared to the real
distance.

The system detects different results for the same
distance. This is caused by the fact that uses pixel
information for the object height. If the detected object
height differs by a few pixels, the resulting calculation will
be different. Various conditions affect the object detection
process, such as lighting, focus, or is the object being

covered by other objects. At distances closer than 3 meters,
the camera most likely picks up the whole object, resulting
in distances close to the average height information hard
coded into the system. Table II shows the maximum error
for each detected distance by doing 30 experiments.

 Accuracy testing is separated into three classes, which

are people, motorcycle, and bicycle. Testing for each class

is done by analyzing a 2-minute recording. For detecting

people in Table III(a), the criteria are as follows:

• True positive (TP) is when people are detected

correctly by the system.

• False positive (FP) is the system detects the

presence of people, even though there are no

people in the detected area, or when the system

detects the object type incorrectly. For example,

the system detects a person, even though the real

object is a motorcycle.

False negative (FN) is the system does not detect an

object, even though there should be an object detected. For

example, the system does not detect people, even though

there are people on the recording.

TABLE II. RESULTS OF DISTANCE TESTING

 Distance (m)

 8 7 6 5 4 3 2

1 8.26 6.73 5.97 4.86 3.81 3.12 1.91

2 7.82 7.11 5.89 5.11 3.90 3.02 1.88

3 8.15 7.01 6.04 4.92 4.00 3.12 1.94
4 7.93 6.92 5.87 4.80 4.19 2.95 1.87

5 8.04 7.02 5.82 5.18 3.95 3.18 2.04

6 7.93 7.01 6.21 4.86 3.84 3.15 1.92
7 8.01 6.92 6.17 4.92 3.92 3.02 1.90

8 8.11 7.10 6.13 4.98 3.90 3.07 2.10

9 8.07 6.93 6.12 5.1 3.91 3.02 1.94
10 8.09 7.03 5.90 5.07 4.04 3.02 2.05

11 8.13 7.14 5.99 5.08 4.14 2.96 2.00

12 7.96 6.98 6.03 5.00 4.02 2.97 2.05
13 8.00 6.91 6.04 4.95 3.92 3.14 2.13

14 8.09 7.03 6.14 4.97 3.97 3.01 2.10
15 8.08 6.97 6.12 4.96 4.00 2.92 1.96

16 7.93 7.14 6.06 5.02 4.09 3.02 1.91

17 8.00 7.02 6.1 5.09 4.01 3.11 1.97
18 7.92 7.08 6.13 4.95 4.02 3.02 2.03

19 8.02 6.94 5.91 4.99 3.94 3.07 2.07

20 8.07 6.93 5.94 5.08 4.13 3.05 2.01
21 8.03 6.93 5.99 5.07 4.12 3.12 2.12

22 8.14 7.05 6.08 5.08 4.13 3.04 1.90

23 8.14 6.99 6.05 4.95 3.96 3.12 2.11
24 7.91 7.11 5.98 5.05 4.10 2.99 2.10

25 8.11 7.05 6.10 5.03 3.98 2.94 1.92

26 8.00 6.96 5.91 4.94 3.94 3.11 2.08
27 8.08 6.93 5.96 5.10 4.01 2.98 2.12

28 8.03 7.12 6.10 5.07 4.02 3.07 2.14

29 7.92 7.11 6.08 4.97 4.02 2.97 2.01
30 7.94 6.94 6.10 4.91 4.00 2.92 2.02

Maximum

error

3.25% 3.86% 3.50% 4% 4.75% 6% 7%

Based on the results, the average precision for people is
0.9452, while the average recall for people is 0.5840. The
number of false negatives during testing is high since the
system cannot recognize objects at high distances, while a
normal human eye still can recognize the object. An
example of the system being unable to recognize objects at
great distances can be seen at Fig. 3.

The number of false positives is low, but not zero. There

are times when the system recognized a motorcycle as a

person. An example of this happening can be seen at Fig. 4.

Journal of Image and Graphics, Vol. 11, No. 2, June 2023

174

Testing for motorcycle in Table III(b) follows these

criteria:

• True positive (TP) is when the system identifies a

motorcycle correctly.

• False positive (FP) is when the system detects a

motorcycle when it is actually not there, or another

object (people or bicycle) is detected as a

motorcycle.

• False negative (FN) is when the system does not

detect a motorcycle, even though there is a

motorcycle.

Based on the results, the average precision for

motorcycle is 0.9760, while the average recall for

motorcycle is 0.4150. A high recall and low precision

mean that the system can identify motorcycles correctly

but missed other motorcycles. The motorcycles that are not

detected are usually because they are too far, so the system

does not have enough information to decide if there is a

motorcycle or not. There are also times when a person is

riding the motorcycle, the person is detected, but the

motorcycle is not detected. An example of this happening

can be seen at Fig. 5.

Testing for bicycle in Table III(c) follows these criteria:

• True positive (TP) is when the bicycle is detected

correctly by the system.

Figure 3. Screenshot of system during testing for people.

Figure 4. False positive during testing for people.

TABLE III. RESULTS OF ACCURACY TESTING

No
(a)People (b)Motorcycle (c)Bicycle

TP FP FN Precision Recall TP FP FN Precision Recall TP FP FN Precision Recall

1 19 0 14 1.000 0.576 8 0 14 1.000 0.364 2 0 7 1.000 0.222

2 33 2 16 0.943 0.673 21 0 20 1.000 0.512 4 0 6 1.000 0.400

3 18 0 27 1.000 0.400 13 0 16 1.000 0.448 3 0 8 1.000 0.273

4 43 1 35 0.977 0.551 7 0 3 1.000 0.700 3 0 6 1.000 0.333

5 44 6 31 0.880 0.587 5 0 13 1.000 0.278 1 0 3 1.000 0.250

6 15 0 22 1.000 0.405 17 0 22 1.000 0.436 4 1 3 0.800 0.571

7 11 3 20 0.786 0.335 7 0 15 1.000 0.318 2 0 4 1.000 0.333

8 26 0 30 1.000 0.464 5 2 10 0.714 0.333 4 0 9 1.000 0.308

9 20 0 27 1.000 0.426 12 0 19 1.000 0.387 5 1 8 0.833 0.385

10 14 0 12 1.000 0.538 8 0 12 1.000 0.400 5 1 7 0.833 0.417

11 24 1 11 0.960 0.686 11 0 21 1.000 0.344 5 1 7 0.833 0.417

12 18 3 10 0.857 0.643 6 0 17 1.000 0.261 3 0 4 1.000 0.429

13 28 0 11 1.000 0.718 12 0 14 1.000 0.462 2 1 8 0.667 0.200

14 23 0 11 1.000 0.676 6 0 9 1.000 0.400 3 0 9 1.000 0.250

15 16 3 10 0.842 0.615 9 0 13 1.000 0.409 2 0 7 1.000 0.222

16 25 0 14 1.000 0.641 5 0 5 1.000 0.500 2 1 5 0.667 0.286

17 18 1 11 0.947 0.621 6 0 11 1.000 0.353 3 0 7 1.000 0.300

18 45 0 31 1.000 0.592 7 0 20 1.000 0.259 4 0 4 1.000 0.500

19 21 0 28 1.000 0.429 10 0 13 1.000 0.435 5 1 9 0.667 0.357

20 19 5 9 0.792 0.679 12 1 14 0.923 0.462 2 1 4 1.000 0.333

21 36 3 21 0.923 0.632 13 0 13 1.000 0.500 2 0 5 1.000 0.286

22 23 1 13 0.958 0.639 10 0 12 1.000 0.455 3 0 6 0.833 0.333

23 24 3 10 0.889 0.706 11 2 11 0.846 0.500 4 1 6 0.667 0.400

24 20 0 19 1.000 0.513 9 0 16 1.000 0.360 4 1 6 1.000 0.400

25 27 1 16 0.964 0.628 14 0 15 1.000 0.483 4 0 5 1.000 0.444

26 28 2 9 0.933 0.757 10 1 14 0.909 0.417 2 1 6 0.667 0.250

27 22 2 19 0.917 0.537 10 0 11 1.000 0.476 2 1 5 0.667 0.286

28 17 1 14 0.944 0.548 10 0 11 1.000 0.476 5 1 5 0.883 0.500

29 24 3 17 0.889 0.585 9 0 15 1.000 0.375 5 0 9 1.000 0.357

30 21 1 9 0.955 0.700 8 1 15 0.889 0.348 3 0 7 1.000 0.300

 Average 0.945 0.584 Average 0.976 0.415 Average 0.897 0.345

Journal of Image and Graphics, Vol. 11, No. 2, June 2023

175

Figure 5. System detects person but not motorcycle

• False positive (FP) is when the system detects a

bicycle when it should not be there, or another

object (human or motorcycle) is detected as a

bicycle.

• False negative (FN) is when the system does not

detect a bicycle, even though it should be.

Based on the results, the average precision for bicycle is

0.8967, while the average recall for bicycle is 0.3447. Just

like during motorcycle testing, people are more likely to

be detected while riding a bicycle. The low number of

bicycles during testing could also be the reason for a lower

precision compared to the other classes. The results for

each class and the mean average can be seen at Table IV.

The results show a mean average precision of 0.9393,

and a mean average recall of 0.4479. This means that the

system can detect most objects correctly but is unable to

detect very far objects compared to a normal human eye.

TABLE IV. RESULTS OF OVERALL ACCURACY TESTING

Object type Average precision Average recall

Person 0.9452 0.584

Motorcycle 0.976 0.415
Bicycle 0.8967 0.3447

Mean Average 0.9393 0.4479

VI. CONCLUSION AND FUTURE WORKS

Based on the research that has been carried out, it can

be concluded that the system has succeeded in recognizing

moving objects through a smartphone camera by involving

digital image processing and using a trained MobileNet v1

model with the COCO dataset. Digital distance calculation

successfully recognizes distances with an error percentage

of under 5% for distances of four meters and above. The

average precision value reaches 0.9393, while the average

recall value reaches 0.4479. Siren and Text-to-Speech also

work as intended.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

David H. Hareva conducted a research methodology to

recognize multiple moving objects, Sebastian Aldi and

Aditya R. Mitra designed and developed a mobile

application support system for the visually impaired, Irene

A. Lazarusli and Calandra A. Haryani analyzed the

application and its output data; and all authors have

approved the final version.

FUNDING

Reporting research in this publication supported by

Kementerian Pendidikan, Kebudayaan, Riset, dan

Teknologi (Ministry of Education, Culture, Research, and

Technology) of Indonesia under award number

069/E5/PG.02.00.PT/2022, 466/LL3/AK.04/2022, and

Universitas Pelita Harapan, Indonesia under award number

121/LPPM-UPH/VI/2022.

REFERENCES

[1] R. R. A. Bourne, et al., “Magnitude, temporal trends, and

projections of the global prevalence of blindness and distance and
near vision impairment: A systematic review and meta-analysis,”

Lancet Glob. Heal., vol. 5, no. 9, pp. e888–e897, Sep. 2017.

[2] C. Praderio. (2017). Here’s how blind people use smartphones.
INSIDER. [Online]. Available: https://www.insider.com/how-

blind-people-use-smartphones-2017-2

[3] M. Abadi, et al., “TensorFlow: A system for large-scale machine
learning,” in Proc. of the 12th USENIX Symposium on Operating

Systems Design and Implementation (OSDI ’16), November 2–4,

2016, Savannah, GA, USA, pp. 265–283.

[4] Everyday Sight. (2020). 25 best apps for the visually impaired-

everyday sight. [Online]. Available:

https://www.everydaysight.com/best-apps-for-visually-impaired/
[5] O. Alsing, “Mobile object detection using TensorFlow lite and

transfer learning,” Dissertation, School of Electrical Engineering

and Computer Science, KTH Royal Institute of Technology, 2018.
[6] TensorFlow. (2020). Running on mobile with TensorFlow lite.

[Online]. Available: https://github.com/tensorflow/models/blob/

master/research/object_detection/g3doc/running_on_mobile_tenso
rflowlite.md

[7] R. Wagner, M. Thom, R. Schweiger, G. Palm, and A. Rothermel,

“Learning convolutional neural networks from few samples,” in
Proc. the 2013 International Joint Conference on Neural Networks

(IJCNN), 2013, doi: 10.1109/IJCNN.2013.6706969

[8] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” in Proc. of the ACM Conference on

Computer and Communications Security, 2011, pp. 627–636.

[9] Android Developers. (2018). Permissions overview | Android
Developers. [Online]. Available: https://developer.android.com/gu

ide/topics/permissions/overview#normal-dangerous

[10] K. Pulli, A. Baksheev, K. Kornyakov, and V. Eruhimov, “Realtime
computer vision with OpenCV,” Queue, vol. 10, no. 4, p. 40, 2012.

[11] S. Khan, H. Rahmani, S. A. A. Shah, and M. Bennamoun, “A guide

to convolutional neural networks for computer vision,” vol. 8, no.
1, Morgan & Claypool Publishers LLC, 2018.

[12] E. Alpadyn, Introduction to Machine Learning Second Edition

Adaptive Computation and Machine Learning, 2nd ed. Cambridge:
The MIT Press, 2010.

[13] L. Deng and D. Yu, “Deep learning: Methods and applications,”
Foundations and Trends in Signal Processing, vol. 7, no. 3–4, p.

202, 2014.

[14] University of Tartu. (2018). Introduction to image processing.
[Online]. Available: https://sisu.ut.ee/imageprocessing/book/

Journal of Image and Graphics, Vol. 11, No. 2, June 2023

176

https://github.com/tensorflow/models/blob/
https://sisu.ut.ee/imageprocessing/book/

[15] R. C. Gonzales and Z. Faisal, Digital Image Processing, 2nd Ed.

2019.

[16] A. G. Howard, et al., “MobileNets: Efficient convolutional neural
networks for mobile vision applications,” arXiv:1704.04861v1,

2017.

[17] W. Fulton. (2015). Calculate distance or size of an object in a photo
image. [Online]. Available:

https://www.scantips.com/lights/subjectdistance.html

[18] O. Smith, “Mapped: The world’s tallest (and shortest) countries,”
Telegraph, 2019.

[19] M. El Aidouni. (2019). Evaluating object detection models: Guide

to performance metrics. [Online]. Available:

https://manalelaidouni.github.io/manalelaidouni.github.io/Evaluati
ng-Object-Detection-Models-Guide-to-Performance-Metrics.html

Copyright © 2023 by the authors. This is an open access article
distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-
commercial and no modifications or adaptations are made.

Journal of Image and Graphics, Vol. 11, No. 2, June 2023

177

https://www.scantips.com/lights/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

