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Abstract—Visually impaired people can use smartphone 

navigation applications to arrive at their destination. 

However, those applications do not provide the means to 

detect moving objects. This paper presents an Android 

application that uses the smartphone’s camera to provide 

real-time object detection. Images captured by the camera 

are to be processed digitally. The model then predicts objects 

from the processed image using a Convolutional Neural 

Network (CNN) stored in mobile devices. The model returns 

bounding boxes for each of the detected objects. These 

bounding boxes are used to calculate the distance from the 

object to the camera. The model used is SSD MobileNet V1, 

which is pre-trained using the Common Objects in Context 

(COCO) dataset. System testing is divided into object 

distance and accuracy testing. Results show that the margin 

of error for calculating distance is below 5% for distances 

under 8 meters. The mean average precision is 0.9393, while 

the mean average recall is 0.4479. It means that the system 

can recognize moving objects through the embedded model 

in a smartphone.   

 
Keywords—Convolutional Neural Network (CNN), deep 

learning, object distance, object detection, support system for 

blind people  

 

I.  INTRODUCTION 

According to a report from the World Health 

Organization, there are about one billion people in this 

world who are visually impaired. Visual impairment can 

be caused by various things, such as untreated presbyopia 

(826 million), cataracts (65.2 million), glaucoma (6.9 

million), and other causes [1]. However, just because 

people are visually impaired does not mean they cannot 

use smartphones to do daily activities. Those who are 

visually impaired can use smartphones via the screen 

reading feature. Apple mobile phones have voiceover, 

while Android phones have TalkBack [2]. Using 

smartphones, visually impaired people can use navigation 

applications such as Google Maps or Waze to reach a 

destination. Unfortunately, these applications are not able 

to recognize moving objects. Then one possible solution is 

to develop a system that can detect moving objects through 

their smartphone camera. Many mobile applications aim to 

help blind people, but they only provide directions to blind 
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people via voice and GPS or require ultrasonic sensors to 

detect objects in front of the user. This system allows users 

to detect moving objects in front of them to avoid accidents, 

especially in crowded places. Upon receiving input from 

the smartphone camera, the system performs image 

computation. TensorFlow Lite will detect objects on the 

processed image [3]. As the output, the system will 

produce a series of frames containing detected moving 

objects in the form of a video stored in the phone device. 

When a moving object is close enough to the user, the 

system will generate an audible warning to the user.  

This research aims to create a system that alerts visually 

impaired persons when an object moves in front of them. 

Moving object detection is performed soon after the 

system receives images from the smartphone’s back 

camera. Image processing and object detection will be 

fully processed on the smartphone. The user will be 

warned through the text-to-speech feature when any object 

moves in front of them. In addition, the system will emit a 

siren sound to alert people around the user if there are 

moving objects that can hit the user with specific risks. It 

is hoped that this mobile application provides benefits for 

visually impaired people by guiding them to reach their 

destination safely. 

II. RELATED WORKS 

Various applications have been developed for blind 

people. A few example applications developed for 

assisting visually impaired people are Blind Square, Be 

My Eyes, and Aipoly Vision. Blind Square is a navigation 

application for the visually impaired with additional 

features such as describing the surrounding road 

conditions and announcing when the user is at a crossroads 

[www.blindsquare.com]. Be My Eyes is an application 

that connects visually impaired people with volunteer 

helpers via video calls to assist visually impaired people in 

navigation. [www.bemyeyes.com]. Aipoly Vision is an 

application that uses the camera to detect any object simply 

by pointing at the camera and pressing a button on the 

application [https://www.aipoly.com/]. 

Nevertheless, currently, no applications can provide 

real-time detection of objects and distance information 

through the camera. Aipoly Vision can only detect one 
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image and requires a continuous button press which may 

be inconvenient or practical for the user. Be My Eyes 

requires volunteers who are willing to help. Further, this 

application is not equipped with a feature that allows 

object detection [4]. To help in processing object detection 

by capturing images from a smartphone’s camera is 

TensorFlow Lite. TensorFlow Lite is a TensorFlow 

application for lightweight use on mobile phones and 

embedded systems [5]. However, only SSD (Single Shot 

Multi Box) models are currently supported by TensorFlow 

Lite. Models such as Faster-RCNN are not supported yet, 

so the performance of SSD and Faster-RCNN cannot be 

compared [6]. Currently, there is no other way to detect the 

moving object solely by images from the camera. The 

developed system must quickly detect an object from 

video image pieces. Based on tests conducted by the 

TensorFlow team, MobileNet’s speed for predicting a 

single frame is 30 milliseconds [7]. If one frame takes 30 

milliseconds, MobileNet will perform a maximum of 33 

detections in one second. Of course, the actual system 

performance depends on the mobile hardware used. 

However, this is one way that can be used to process object 

detection quickly. 

III. METHODOLOGY 

The system that will be implemented is an Android 

application called “Blindness Path Guidance”. Through 

Android, app developers can access the phone’s hardware, 

such as the camera, WiFi connection, cellular network, and 

data on the phone. Every application developed for 

Android needs access permissions in three threat levels [8] 

that are declared in the app’s manifest file [9]. First, they 

are standard permission that does not harm the user; for 

example, is asked to change the time zone. Signature 

permission regulates access to the most dangerous 

permissions, such as deleting other applications. This 

permission is only granted to pre-installed apps by the 

phone manufacturer [8]. Last is Malicious permission, 

which can access users’ personal information such as 

reading the contact list or accessing the camera. The user 

must grant malicious permissions during runtime to 

operate [9]. 

Human visual senses can be modeled using computer 

vision to automate the recognition of objects that are seen 

around. For example, text-to-speech, automated car 

parking, accessing information by reading QR codes or 

moving object detection [10]. Most computer visions use 

something called Convolutional Neural Network (CNN). 

It is a neural network often used for high-dimensional data, 

such as images and videos. Neocognitron is a sample of 

the CNN model proposed by Kunihiko Fukushima in 1982. 

It is inspired by the work of Hubel and Wiesel based on 

how nerves work in the brain and consist of many 

layers [11]. A model of CNN used machine learning to 

develop algorithms by studying specific data patterns. The 

machine can make predictions from the patterns learned by 

assuming that the existing data will not differ much from 

the data at the time of collection [12]. Deep learning is a 

subset of machine learning that learns data through 

different representations. Deep learning using images can 

be applied to recognizing objects or recognizing certain 

features, such as recognizing humans, bicycles, 

motorbikes, or others. Typically, deep learning makes use 

of artificial neural networks [13]. 

Improving accuracy in recognizing objects in the 

selected image needs image processing. This can be in the 

form of noise filtering, converting color images to 

monochromatic, changing image size, location of objects 

in the image, and much more [14, 15]. 

MobileNet is a type of CNN model designed by a team 

of researchers from Google to apply computer vision on 

mobile phones and embedded systems. The purpose is for 

real-world tasks that require efficient models with limited 

computational resources, such as building robots, 

augmented reality, and autonomous cars. From the results 

of tests conducted by Andrew G. Howard and his team of 

researchers, it can be seen in Table I that MobileNet has 

similar accuracy to VGG and Inception V2 but with far 

fewer parameters [16].  

There are several methods to get distance from an object 

to the camera, but the best method to obtain the distance 

using a single image is by using perspective. The 

information needed to calculate the distance from the 

object to the camera is the lens’s focus, the sensor’s height, 

the height of the object in the image, the height of the 

image, and the actual height of the object. The formula for 

calculating the distance can be seen in Eq. (1). The unit of 

the object’s height will determine the object’s distance 

from the camera [17]. 

TABLE I. COMPARISON OF MOBILENET TO VGG AND INCEPTION V2 

Framework  

Resolution 
Model mAP 

Billion Mult- 

Adds 

Million 

Parameters 

SSD 300 

deeplab-VGG 21.1% 34.9 33.1 

Inception V2 22.0% 3.8 13.7 
MobileNet 19.3% 1.2 6.8 

Faster-
RCNN 300 

VGG 22.9% 64.3 138.5 

Inception V2 15.4% 118.2 13.3 

MobileNet 16.4% 25.2 6.1 

Faster-
RCNN 600 

VGG 25.7% 149.6 138.5 

Inception V2 21.9% 129.6 13.3 

MobileNet 19.8% 30.5 6.1 

 

𝐷 =
ℎ𝑟𝑒𝑎𝑙 𝑥 𝑓 𝑥 ℎ𝑖𝑚𝑎𝑔𝑒

ℎ𝑠𝑒𝑛𝑠𝑜𝑟 𝑥 ℎ𝑜𝑏𝑗𝑒𝑐𝑡
                              (1) 

where, ℎ𝑟𝑒𝑎𝑙: actual object height, 𝑓: focal length (mm), 

ℎ𝑖𝑚𝑎𝑔𝑒: image height (pixel), ℎ𝑠𝑒𝑛𝑠𝑜𝑟: sensor height (mm), 

and ℎ𝑜𝑏𝑗𝑒𝑐𝑡: object height in picture (pixel). 

However, getting the actual height of the detected object 

is difficult, so the value of the actual height of the object is 

the average height of the detected object. For example, the 

average human height in Asia is 1.58 meters [18], so that 

number will replace the actual object height. 

Precision is the chance that the system predicts the 

correct prediction, while Recall is the chance the system 

can predict an object. The formula for Precision can be 

seen in Eq. (2), while the formula for Recall can be seen in 

Eq. (3). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                   (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                      (3) 
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where, TP: True Positive, FP: False Positive, and FN: 

False Negative  

Precision and Recall will result in a number between 

zero and one. Ideally, Precision and Recall should be high. 

If the Precision is high, but Recall is low, many predicted 

objects are correct, but many objects are not detected. If 

the Recall is high, but the Precision is low, it means many 

objects were predicted correctly, but there are many wrong 

predictions. After calculating the Precision and Recall for 

each type of object detected, the Precision and Recall 

values can be added and divided by the number of object 

types to obtain the mean average Precision and mean 

average recall [19]. 

IV. SYSTEM DESIGN 

The application begins by loading the model embedded 

on a mobile phone. After the model is successfully loaded, 

the mobile phone camera records a video, then the 

application will capture image frames from the video, and 

the image processing stage begins. This stage produces 

images with a size of 300 × 300 pixels. The results are then 

used as input for the object recognition stage. The object 

recognition stage is carried out using a model loaded in the 

system’s early stages. The model will produce output in 

the form of a bounding box that stores information on the 

location and type of objects. The system then calculates the 

object’s distance from the camera using the perspective of 

a single image in Eq. (1). If any objects are detected, the 

system will then give a warning to the surrounding by 

sirens and information to the user.  

A. Model Training  

Before creating the system, the model that will be used 

to detect objects needs to be trained using the data that has 

been prepared. The base model that is going to be used for 

the system is ssd_mobilenet_v1_coco. After the computer 

has finished installing TensorFlow for training, the next 

step is to label the training data. The labelImg program will 

be used to label images. LabelImg is a tool that make it 

very easy to annotate image (https://pypi.org/project/ 

labelImg). After labeling all training data, labelImg will 

generate an xml file per image. Then, the data for training 

and testing will be separated. Then, the training and testing 

data need to be converted into a record file. The conversion 

is done using a script provided by TensorFlow. After the 

conversion is complete, model training can be started. 

The number of training epochs can be calculated by the 

batch size multiplied by the number of steps divided by the 

number of images used for training. The batch size used is 

two, the number of images is 300, and the number of steps 

is 18,000. If counted, this means the model trained for 120 

epochs. 

B. Testing  

Testing will be done through distance testing and 

accuracy testing. Distance testing will be done by placing 

the smartphone at a height of one meter above the ground, 

then someone will walk towards the cell phone. A 

measuring tape will be used to measure the original 

distance. Distance measurement starts at 8 meters and ends 

at two meters. To test the performance of the system for 

measuring distance, error percentage will be used. The 

smaller the error percentage, the more accurate the system 

is in calculating distance. The error is calculated by taking 

the difference between the calculated distance and the 

original distance and dividing it by the original distance. 

Multiply the number by 100 to get the error as a percentage. 

The accuracy test will be done by taking a recording of the 

system using a smartphone while walking in a crowd, for 

two minutes. The recording will be checked every second 

for true positive, false positive, false negative.  

• True Positive (TP) is when an object that was 

detected correctly by the system.  

• False Positive (FP) is when the system to detect an 

object, even though there are no objects in the 

detected area.  

• False Negative (FN) is the system does not detect 

an object, even though there should be an object 

detected.  

The sum of the TP, FP, and FN collected within the two-

minute period will be used in calculating system 

performance. The units used to evaluate system 

performance are Precision and Recall. The method of 

calculating precision and recall can be seen at Eq. (2) and 

(3). 

V. IMPLEMENTATION AND TESTING  

The system will be created for Android using the Kotlin 

programming language. The system is divided into several 

stages, namely accessing the camera, Android image 

processing, object recognition, calculating object distances, 

sirens, and text-to-speech as illustrated on Fig. 1.  

 

 

Figure 1. Model of blindness path guidance. 

A. Accessing the Camera  

The system requires camera access to capture images. 

To gain camera access, the system will first ask the user 

for permission to use the camera. Helper code for 

managing camera permissions is divided into four 

functions. Each function has its own role that can be called 

on the main logic of the system, namely:  

• hasCameraPermission, whose role is to check 

whether the permission for camera access has been 

granted or not. Returns true if given and returns 

false if not already provided.  

• requestCameraPermission, whose role is to 

request camera access permission to the user. This 

function is called when the user has never or 

refused to provide camera access to the system. 

The system can request access permission for the 

camera by writing Manifest.permi 

ssion.CAMERA in manifest.xml.  

• shouldShowRequestPermissionRationale, 

whose role is to check whether a permission has 

been granted or not. This function returns true if 
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the system never asked for permission or asked for 

permission but was denied, and false when the user 

refuses with the option not to ask again. This 

function is needed to check when the user presses 

the button not to ask again, so that the system can 

show an alternative screen if needed. 

launchPermissionSettings, which moves the 

active screen to the phone settings screen. This 

function is required when the user presses the 

button to deny and never ask again when 

requesting camera access. The system moves the 

user to the settings screen so that the user can grant 

access manually.  

The application interface when requesting camera 

access to the user can be seen in Fig. 2. 

 

Figure 2. Application interface when asking for permission. 

B. Android Image Processing  

The code to receive an image from a mobile phone 

camera is a callback that is called by using 

setOnImageAvailable Listener. When the image is 

ready, the code inside the callback will be executed. By 

calling acquireLatestImage, the latest image will be 

received by the system. The received image is an object 

with the class android.media.Image, with YUV color 

formatting.  

The input from TensorFlow Lite only accepts 

information in RGB color format, so every pixel in the 

received image needs to be converted to RGB. The 

conversion process to RGB is carried out by separating the 

YUV information into three parts, namely Y (brightness), 

U (blue projection), and V (red projection). For each pixel 

in the received image, the Y, U, and V information are 

separated, then converted to RGB color format via the 

YUV2RGB function.  

Android does not provide a function for converting from 

YUV to RGB. An additional function is required to 

convert color format from YUV to RGB. The YUV2RGB 

function accepts the Y, U, and V values of a single pixel 

and then returns the pixel values in RGB color format. In 

general, conversion from YUV to RGB requires 

multiplying by non-integer numbers. However, the input 

that TensorFlow Lite wants is an 8-bit integer. To solve 

this, the YUV2RGB function multiplies by a large number, 

then clamps the pixel value between 0 and 128.  

TensorFlow Lite accepts an 8-bit number for each R, G, 

and B value of the pixels. In hexadecimal form, the RGB 

color format has the highest value of 0xff or 255 for each 

color. The red, green, and blue values can then be mixed 

to get the desired color. For example, the representation of 

yellow (red mixed with green) is 0Xffff00. The first ff 

value is the maximum red color, the second ff is the 

maximum green color, and the 00 value at the end is no 

blue mixture at all. Through the representation in 

hexadecimal, R, G, and B information can be mixed and 

separated easily. 

C. Object Detection  

After processing the image digitally, the application 

needs to extract the pixels from the image as input. To 

simplify the application, object detection is performed on 

a single function that accepts a 300 × 300 pixels bitmap 

and returns a list of objects in the form of a Recognition 

class. Recognition is a self-made class that stores three 

variables, namely title, confidence, and 

location of the object.  

• Title stores the detected object’s name (human, 

motorcycle, or bicycle).  

• Confidence stores the percentage of confidence 

that an object is true, with 100% being very sure 

and 0% being unsure.  

• Location stores the location of the detected 

object in rectangular coordinates.  

The contents of the function can be broken down into 

three important parts, namely:  

1. The process of extracting pixel values from the 

bitmap by calling the built-in function getPixels. 

getPixels is a function that fills the array in the 

first argument. In this case, getPixels will fill 

the array used as input for TensorFlow Lite. The 

pixel information is separated into red, green, and 

blue via conversion to hexadecimal. The result will 

be a byte buffer with size 300 × 300 × 3. 

2. The process of preparing the input and output, 

which are included with object detection by calling 

the runForMultipleInputsOutputs function. 

The function accepts one input array and four 

output arrays. The input array contains the images 

that will be detected, but in this case the input array 

only contains the most recent image. The four 

output arrays consist of location, object type, 

confidence percentage, and number of detected 

objects.  

3. The process of converting the results of object 

detection into the Recognition class so that it is 

more easily recognized by the system. The model 

used has limitations in recognizing a maximum of 

10 objects in one image. However, the number of 

detected objects is not always certain. If less than 

10 objects are detected, the contents of the array for 

the remaining indexes will be empty. The next step 

will be converting the detected objects into a 

Recognition class and returning a list with no 

empty objects. This makes it easier for the 

application because it does not have to check 

whether an element in the original output array has 

a value or not. By using the Recognition class, 

calling the object location or object type can be 

done by accessing the member of the object’s class. 
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D. Calculating Object Distance  

First, for each detected object, it is necessary to see the 

percentage of confidence to prevent wrong detection in the 

image. Objects with a low percentage of confidence are 

ignored. The minimum recommended confidence to 

reduce false positives is 60% [1]. For each detected object, 

height information in pixels is required to calculate the 

object’s distance to the camera. Other information is also 

required, such as the image size, the focal length of the 

camera, the size of the camera sensor, and information 

regarding the average height of the detected object.  

• The size of the captured image can be obtained 

simply  

• The camera sensor size can be obtained by 

retrieving the SENSOR_INFO_PHYSICAL_SIZE 

info from the CameraCharacteristics class.  

• The object’s average height information is hard 

code declared at the start of the system. The 

average height value per object is obtained by 

searching publicly available information and can 

be replaced when there is newer information.  

When all the information has been collected, the 

object’s distance from the camera can be calculated using 

Eq. (1). Apart from calculating the distance, the system 

also checks whether there are objects that are close to the 

user. The minimum distance can be changed to adjust it to 

be further or closer. 

E. Siren and Text-to-Speech  

For each object detected by TensorFlow, the object 
name is translated into Indonesian, then the distance 
information is stored. After saving the object’s location 
information, the system will shorten the spoken text by 
saying the object type at the beginning, then combine all 
the detected distances for that object type. An example is 
the system would shorten “Person 5 meters Person 7 
meters” to “Person 5 meters 7 meters”. Siren and Text-to-
Speech cannot be played at the same time. The system 
needs to decide whether to sound the siren or turn on Text-
to-Speech. Based on the closest distance that has been 
determined when calculating the distance of all objects, the 
system will determine the source of sound output, namely 
from connected headphones or from the speaker of a 
cellphone. To control the sound output, an object with 
access to Android’s audio system is needed. The 
audioManager variable is an object with the class 
android.media.AudioManager, which controls the 

sound source. To turn on the speaker on a mobile phone, 
the value of isSpeakerphoneOn must be true, and the 
mode must be MODE_IN_COMMUNICATION.  

F. Results of System Testing  

System testing is divided into distance testing and 
accuracy testing. Distance testing is done by using a 
measuring tape to get the real distance. The distance 
calculated by the system will be compared to the real 
distance.  

The system detects different results for the same 
distance. This is caused by the fact that uses pixel 
information for the object height. If the detected object 
height differs by a few pixels, the resulting calculation will 
be different. Various conditions affect the object detection 
process, such as lighting, focus, or is the object being 

covered by other objects. At distances closer than 3 meters, 
the camera most likely picks up the whole object, resulting 
in distances close to the average height information hard 
coded into the system. Table II shows the maximum error 
for each detected distance by doing 30 experiments.  

 Accuracy testing is separated into three classes, which 

are people, motorcycle, and bicycle. Testing for each class 

is done by analyzing a 2-minute recording. For detecting 

people in Table III(a), the criteria are as follows:  

• True positive (TP) is when people are detected 

correctly by the system.  

• False positive (FP) is the system detects the 

presence of people, even though there are no 

people in the detected area, or when the system 

detects the object type incorrectly. For example, 

the system detects a person, even though the real 

object is a motorcycle.  

False negative (FN) is the system does not detect an 

object, even though there should be an object detected. For 

example, the system does not detect people, even though 

there are people on the recording. 

TABLE II. RESULTS OF DISTANCE TESTING  

 Distance (m) 

 8 7 6 5 4 3 2 

1 8.26 6.73 5.97 4.86 3.81 3.12 1.91 

2 7.82 7.11 5.89 5.11 3.90 3.02 1.88 

3 8.15 7.01 6.04 4.92 4.00 3.12 1.94 
4 7.93 6.92 5.87 4.80 4.19 2.95 1.87 

5 8.04 7.02 5.82 5.18 3.95 3.18 2.04 

6 7.93 7.01 6.21 4.86 3.84 3.15 1.92 
7 8.01 6.92 6.17 4.92 3.92 3.02 1.90 

8 8.11 7.10 6.13 4.98 3.90 3.07 2.10 

9 8.07 6.93 6.12 5.1 3.91 3.02 1.94 
10 8.09 7.03 5.90 5.07 4.04 3.02 2.05 

11 8.13 7.14 5.99 5.08 4.14 2.96 2.00 

12 7.96 6.98 6.03 5.00 4.02 2.97 2.05 
13 8.00 6.91 6.04 4.95 3.92 3.14 2.13 

14 8.09 7.03 6.14 4.97 3.97 3.01 2.10 
15 8.08 6.97 6.12 4.96 4.00 2.92 1.96 

16 7.93 7.14 6.06 5.02 4.09 3.02 1.91 

17 8.00 7.02 6.1 5.09 4.01 3.11 1.97 
18 7.92 7.08 6.13 4.95 4.02 3.02 2.03 

19 8.02 6.94 5.91 4.99 3.94 3.07 2.07 

20 8.07 6.93 5.94 5.08 4.13 3.05 2.01 
21 8.03 6.93 5.99 5.07 4.12 3.12 2.12 

22 8.14 7.05 6.08 5.08 4.13 3.04 1.90 

23 8.14 6.99 6.05 4.95 3.96 3.12 2.11 
24 7.91 7.11 5.98 5.05 4.10 2.99 2.10 

25 8.11 7.05 6.10 5.03 3.98 2.94 1.92 

26 8.00 6.96 5.91 4.94 3.94 3.11 2.08 
27 8.08 6.93 5.96 5.10 4.01 2.98 2.12 

28 8.03 7.12 6.10 5.07 4.02 3.07 2.14 

29 7.92 7.11 6.08 4.97 4.02 2.97 2.01 
30 7.94 6.94 6.10 4.91 4.00 2.92 2.02 

Maximum 

error 

3.25% 3.86% 3.50% 4% 4.75% 6% 7% 

 

Based on the results, the average precision for people is 
0.9452, while the average recall for people is 0.5840. The 
number of false negatives during testing is high since the 
system cannot recognize objects at high distances, while a 
normal human eye still can recognize the object. An 
example of the system being unable to recognize objects at 
great distances can be seen at Fig. 3. 

The number of false positives is low, but not zero. There 

are times when the system recognized a motorcycle as a 

person. An example of this happening can be seen at Fig. 4. 
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Testing for motorcycle in Table III(b) follows these 

criteria:  

• True positive (TP) is when the system identifies a 

motorcycle correctly.  

• False positive (FP) is when the system detects a 

motorcycle when it is actually not there, or another 

object (people or bicycle) is detected as a 

motorcycle.  

• False negative (FN) is when the system does not 

detect a motorcycle, even though there is a 

motorcycle.  

Based on the results, the average precision for 

motorcycle is 0.9760, while the average recall for 

motorcycle is 0.4150. A high recall and low precision 

mean that the system can identify motorcycles correctly 

but missed other motorcycles. The motorcycles that are not 

detected are usually because they are too far, so the system 

does not have enough information to decide if there is a 

motorcycle or not. There are also times when a person is 

riding the motorcycle, the person is detected, but the 

motorcycle is not detected. An example of this happening 

can be seen at Fig. 5. 

Testing for bicycle in Table III(c) follows these criteria:  

• True positive (TP) is when the bicycle is detected 

correctly by the system.  

 

Figure 3. Screenshot of system during testing for people. 

 

Figure 4. False positive during testing for people. 

TABLE III. RESULTS OF ACCURACY TESTING 

No 
(a)People (b)Motorcycle (c)Bicycle 

TP FP FN Precision Recall TP FP FN Precision Recall TP FP FN Precision Recall 

1 19 0 14 1.000 0.576 8 0 14 1.000 0.364 2 0 7 1.000 0.222 

2 33 2 16 0.943 0.673 21 0 20 1.000 0.512 4 0 6 1.000 0.400 

3 18 0 27 1.000 0.400 13 0 16 1.000 0.448 3 0 8 1.000 0.273 

4 43 1 35 0.977 0.551 7 0 3 1.000 0.700 3 0 6 1.000 0.333 

5 44 6 31 0.880 0.587 5 0 13 1.000 0.278 1 0 3 1.000 0.250 

6 15 0 22 1.000 0.405 17 0 22 1.000 0.436 4 1 3 0.800 0.571 

7 11 3 20 0.786 0.335 7 0 15 1.000 0.318 2 0 4 1.000 0.333 

8 26 0 30 1.000 0.464 5 2 10 0.714 0.333 4 0 9 1.000 0.308 

9 20 0 27 1.000 0.426 12 0 19 1.000 0.387 5 1 8 0.833 0.385 

10 14 0 12 1.000 0.538 8 0 12 1.000 0.400 5 1 7 0.833 0.417 

11 24 1 11 0.960 0.686 11 0 21 1.000 0.344 5 1 7 0.833 0.417 

12 18 3 10 0.857 0.643 6 0 17 1.000 0.261 3 0 4 1.000 0.429 

13 28 0 11 1.000 0.718 12 0 14 1.000 0.462 2 1 8 0.667 0.200 

14 23 0 11 1.000 0.676 6 0 9 1.000 0.400 3 0 9 1.000 0.250 

15 16 3 10 0.842 0.615 9 0 13 1.000 0.409 2 0 7 1.000 0.222 

16 25 0 14 1.000 0.641 5 0 5 1.000 0.500 2 1 5 0.667 0.286 

17 18 1 11 0.947 0.621 6 0 11 1.000 0.353 3 0 7 1.000 0.300 

18 45 0 31 1.000 0.592 7 0 20 1.000 0.259 4 0 4 1.000 0.500 

19 21 0 28 1.000 0.429 10 0 13 1.000 0.435 5 1 9 0.667 0.357 

20 19 5 9 0.792 0.679 12 1 14 0.923 0.462 2 1 4 1.000 0.333 

21 36 3 21 0.923 0.632 13 0 13 1.000 0.500 2 0 5 1.000 0.286 

22 23 1 13 0.958 0.639 10 0 12 1.000 0.455 3 0 6 0.833 0.333 

23 24 3 10 0.889 0.706 11 2 11 0.846 0.500 4 1 6 0.667 0.400 

24 20 0 19 1.000 0.513 9 0 16 1.000 0.360 4 1 6 1.000 0.400 

25 27 1 16 0.964 0.628 14 0 15 1.000 0.483 4 0 5 1.000 0.444 

26 28 2 9 0.933 0.757 10 1 14 0.909 0.417 2 1 6 0.667 0.250 

27 22 2 19 0.917 0.537 10 0 11 1.000 0.476 2 1 5 0.667 0.286 

28 17 1 14 0.944 0.548 10 0 11 1.000 0.476 5 1 5 0.883 0.500 

29 24 3 17 0.889 0.585 9 0 15 1.000 0.375 5 0 9 1.000 0.357 

30 21 1 9 0.955 0.700 8 1 15 0.889 0.348 3 0 7 1.000 0.300 

 Average 0.945 0.584 Average 0.976 0.415 Average 0.897 0.345 
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Figure 5. System detects person but not motorcycle 

• False positive (FP) is when the system detects a 

bicycle when it should not be there, or another 

object (human or motorcycle) is detected as a 

bicycle.  

• False negative (FN) is when the system does not 

detect a bicycle, even though it should be.  

Based on the results, the average precision for bicycle is 

0.8967, while the average recall for bicycle is 0.3447. Just 

like during motorcycle testing, people are more likely to 

be detected while riding a bicycle. The low number of 

bicycles during testing could also be the reason for a lower 

precision compared to the other classes. The results for 

each class and the mean average can be seen at Table IV. 

The results show a mean average precision of 0.9393, 

and a mean average recall of 0.4479. This means that the 

system can detect most objects correctly but is unable to 

detect very far objects compared to a normal human eye. 

TABLE IV. RESULTS OF OVERALL ACCURACY TESTING 

Object type Average precision Average recall 

Person 0.9452 0.584 

Motorcycle 0.976 0.415 
Bicycle 0.8967 0.3447 

Mean Average 0.9393 0.4479 

VI. CONCLUSION AND FUTURE WORKS  

Based on the research that has been carried out, it can 

be concluded that the system has succeeded in recognizing 

moving objects through a smartphone camera by involving 

digital image processing and using a trained MobileNet v1 

model with the COCO dataset. Digital distance calculation 

successfully recognizes distances with an error percentage 

of under 5% for distances of four meters and above. The 

average precision value reaches 0.9393, while the average 

recall value reaches 0.4479. Siren and Text-to-Speech also 

work as intended. 
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