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Abstract—Non-small Cell Lung Cancer (NSCLC) is one of 

the malignant tumors with the highest morbidity and 

mortality. The postoperative recurrence rate in patients with 

NSCLC is high, which directly endangers the lives of patients. 

In recent years, many studies have used Computed 

Tomography (CT) images to predict NSCLC recurrence. 

Although this approach is inexpensive, it has low prediction 

accuracy.  Gene expression data can achieve high accuracy. 

However, gene acquisition is expensive and invasive, and 

cannot meet the recurrence prediction requirements of all 

patients. In this study, a low-cost, high-accuracy residual 

multilayer perceptrons-based genotype-guided recurrence 

(ResMLP_GGR) prediction method is proposed that uses a 

gene estimation model to guide recurrence prediction. First, 

a gene estimation model is proposed to construct a mapping 

function of mixed features (handcrafted and deep features) 

and gene data to estimate the genetic information of tumor 

heterogeneity. Then, from gene estimation data obtained 

using a regression model, representations related to 

recurrence are learned to realize NSCLC recurrence 

prediction. In the testing phase, NSCLC recurrence 

prediction can be achieved with only CT images. The 

experimental results show that the proposed method has few 

parameters, strong generalization ability, and is suitable for 

small datasets. Compared with state-of-the-art methods, the 

proposed method significantly improves recurrence 

prediction accuracy by 3.39% with only 1% of parameters.   
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I. INTRODUCTION 

Lung cancer is the leading cause of cancer-related death 

worldwide. Non-small Cell Lung Cancer (NSCLC) 

includes all lung epithelial cancers, excluding small cell 

lung cancer, which is the main type of lung cancer, 

accounting for approximately 85% [1]. Thoracic surgeons 
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prefer surgical resection for treating NSCLC. However, 

patients with NSCLC still have a high risk of recurrence 

and death after surgery and adjuvant chemotherapy. Once 

relapsed, more than half of the patients survived less than 

one year [2]. Accurately predicting the recurrence of 

NSCLC can effectively guide the clinical formulation of 

personalized treatment and follow-up plans, assist clinical 

decision-making, and improve the patients’ survivability. 

Currently, most studies on the prediction of cancer 

recurrence use radiomics methods [3, 4]. Taking X-ray, 

computed tomography (CT), magnetic resonance, 

ultrasound, nuclear medicine, and other medical images as 

research objects, researchers have attempted to use 

machine learning methods to extract high throughput 

quantitative features that can quantify tumor 

characteristics from medical images, and further mine on 

this basis to construct prediction models to achieve non-

invasive analysis of tumor heterogeneity. The association 

between radiomics and cancer recurrence has been 

demonstrated for NSCLC [5–8]. Wang et al. [6] used the 

optimized features of multiple CT images and patient 

prognosis data as inputs, and applied classifiers such as 

random forest and Principal Component Analysis (PCA) 

to assist doctors in planning postoperative treatment and 

review of patients with NSCLC. To predict the recurrence 

of lung cancer within two years, Lee et al. first applied the 

Relief-F algorithm to select three significant features from 

68 radiomics features, and then using random forest and 

support vector machine (SVM), they trained two groups of 

data representing recurrence and non-recurrence, 

respectively, within two years [7]. In a recent study, 

Christie et al. [8] predicted the recurrence of NSCLC by 

combining quantitative and qualitative features of the 

tumor and its surrounding area with clinical features. All 

studies have demonstrated that handcrafted features are 

potential biomarkers for predicting NSCLC recurrence. 
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With the development of Deep Learning (DL) 

technology, many DL methods based on CT images have 

also been applied to the classification of malignant tumors 

[9, 10]. Jiao et al. [11] developed a DL model combining 

circulating tumor cell counts and deep learning radiomics 

to predict the recurrence outcomes of patients with early-

stage (ES) NSCLC treated with stereotactic body radiation 

therapy. Fusing pathological images of hematoxylin and 

eosin and clinical data, Yang et al. [12] developed a novel 

multimodal DL model that can accurately predict and 

evaluate the risk of recurrence and metastasis in HER2-

positive breast cancer. With the powerful learning ability 

of DL, these methods can automatically quantify and 

extract deeper, clinically meaningful high-level features 

from medical images, without requiring too much manual 

intervention (pre-defined), and have outperformed 

radiomics methods. High-level features, largely abstracted 

by DL methods, can be used to predict NSCLC recurrence 

in an unbiased manner. 

In recent years, some researchers have started exploring 

the potential of genetic information in prediction tasks. 

The researches [13, 14] proposed an approach that fused 

radiomics and genomics to predict lung cancer recurrence, 

achieving good results. Methods utilizing genetic 

information of genes achieve better prediction accuracy 

than machine learning and DL methods. However, the 

acquisition of gene expression is an invasive procedure 

and is significantly more expensive than the acquisition of 

CT images. In many cases, the required gene expression is 

undetectable and cannot be obtained in inoperable patients. 

The limitations of the research [13] are the possibility of 

surgery, the unavailability of gene expression data, and the 

high cost due to the complexity of the examination, which 

is an invasive diagnostic method. 

Due to the association between images and gene 

expression [15–18], in our previous studies, we proposed 

a Genotype-Guided Radiomics (GGR) method and a deep 

genotype-guided radiomics fusion (GGR_fusion) method 

[17, 18], both of which were composed of a gene 

estimation model and a recurrence prediction model. 

However, the design of the gene estimation models is too 

simple to effectively use the features of different levels and 

is limited in their ability to comprehensively represent the 

potential information related to recurrence. Moreover, the 

estimates for each gene are separated, which complicates 

the training process. Besides, this dimension design, where 

2,000 neurons are directly reduced to two neurons is 

unstable and may affect prediction accuracy. Hence, we 

proposed a novel residual multilayer perceptrons-based 

genotype-guided recurrence (ResMLP_GGR) prediction 

of NSCLC. First, for the gene estimation model, a 

ResMLP module is designed to replace the Fully 

Connected (FC) layer to fully integrate features of 

different modalities and dimensions (handcrafted and deep 

features), while avoiding the problem of gradient 

vanishing caused by a very deep structure. Furthermore, 

considering the stability of the recurrence prediction model, 

while keeping the width unchanged, a Deeper Multilayer 

Perceptron (MLP) model is developed to learn more 

complex expressions of the estimated genes to improve the 

accuracy of predicting recurrence. The main contributions 

of this study are as follows: 

(1) We proposed a new feature extraction and fusion 

unit, the ResMLP module. This module is primarily 

composed of two MLPs with residual structures in series, 

which can fully fuse features of different modalities and 

dimensions. 

(2) We developed a novel end-to-end gene estimation 

model that significantly reduces the number of parameters 

and increases the processing speed. In a small sample task, 

a model with fewer parameters avoids overfitting and 

improves its generalization ability. The end-to-end 

structure increases the number of learning samples in the 

encoder, further improving the generalization ability of the 

model. 

(3) Experimental results demonstrate that the proposed 

method achieves state-of-the-art prediction accuracy 

compared to other radiomics and DL methods. Moreover, 

in the testing phase, the proposed algorithm can accurately 

predict the recurrence of NSCLC only by using non-

invasive CT images. 

Preliminary work was presented as a 4-pages 

conference paper in the 2022 IEEE Engineering in 

Medicine and Biology Society (EMBC) [19]. This paper 

involves methodological and experimental extensions and 

validations. We evolve the gene estimation model into an 

end-to-end structure to estimate 74 genes at one time, 

reducing the number of model parameters, speeding up the 

speed and improving the accuracy. In addition, we add 

ablation experiments and expand the comparison of the 

Fragments Per Kilobase Million (FPKM) values of genes 

estimated with the existing GGR method [17], the 

proposed method and the real genes to demonstrate the 

effectiveness of our proposed method. 

II. MATERIALS 

This study used a publicly available radiogenomics 

dataset of NSCLC from the Open Research Cancer 

Imaging Archive (TCIA), funded by the National Cancer 

Institute [20]. The dataset provides CT images of NSCLC 

subjects (in Dicom format) and gene data from resected 

tumor tissue samples. The R01 cohort consisted of 162 

patients with early-stage NSCLC, including 38 women and 

124 men, with a mean scan age of 68 years (range: 42–86 

years). They all gave written consent in accordance with 

the guidelines of institutions’ IRBs [21]. 

A. Image Data and Preprocessing 

At the request of the institution, all 162 subjects’ CT 

image data were obtained in the supine position, with a 

single breath-hold scan ranging from the apex of the lung 

to the adrenal gland. According to the NSCLC recurrence 

task, the inclusion criteria for data used in this study were 

as follows: (a) patients with paired data (CT image and 

gene data); (b) patients with tumor mask and recurrence 

label. The exclusion criteria in this study were as follows: 

(a) patients without tumor masks; (b) patients without gene 

data; (c) patients without recurrence labels; (d) patients 

who died for unknown reasons prior to recurrence [18–21]. 

Finally, 88 patients who met the experimental 
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requirements were included in this study, and their clinical 

characteristics are listed in Table Ⅰ. 

For the segmentation of tumors, the initial segmentation 

of axial CT image sequences of the subjects was performed 

using an unpublished automatic segmentation 

algorithm [21]. These slides were then examined by 

radiologists with more than five years of experience 

diagnosing chest lesions, and the ePAD software was used 

to perform the necessary editing and corrections [21]. 

Finally, to evaluate the consistency of tumor segmentation 

among the participants, another radiologist with superior 

experience in diagnosing thoracic diseases reviewed the 

segmentation results of the previous doctors, and discussed 

and revised the dissenting samples until a consistent final 

segmentation result was obtained [21]. All ultimately 

approved segmentations (tumor masks) are stored as 

Dicom segmentation objects. Some CT images and their 

tumor masks are depicted in Fig. 1. 

TABLE I.  CLINICAL CHARACTERISTICS OF THE 88 PATIENTS 

Total n = 88 patients 

Age (year)  46–85 

Gender 
Male 

Female 

64 (72.72%) 

24 (27.27%) 

Smoking 

Status 

Current 

Former 
Nonsmoker 

14 (15.91%) 

59 (67.05%) 
15 (17.05%) 

Recurrence 
No 
Yes 

59 (67.05%) 
29 (32.95%) 

 

Because the information contained in CT images is 

relatively complex, directly analyzing the original CT 

images will introduce a lot of noise unrelated to recurrence. 

To achieve accurate recurrence prediction of NSCLC, 

some preprocessing of CT images is required [22–24]. 

Considering the differences in tumor size between the 

subjects, the number of slices containing tumors generally 

varies. We first selected the largest slice of the tumor and 

its adjacent slices (the above and below slices, three slices 

for each patient) as the research objects and truncated the 

intensity information outside the range of −1000HU ~ 

+400HU (Hounsfield Unit). This range covers all the 

information required in the CT images in this study, 

including air, water, and soft tissues of different lungs [23]. 

Using the slice with the largest tumor area and its adjacent 

slices as input results in more volume data information and 

can better learn features related to the recurrence task than 

just select the largest slice alone [24], which is also a 

commonly used processing method in medical image 

preprocessing. The largest slice and its adjacent slices can 

be easily fed to the ResNet-50 model to extract deep 

features. These three slices of each sample were then 

normalized to pixel values ranging from 0 to 255 to mask 

intensity differences between different acquisition devices. 

Finally, we multiplied three CT images by their 

corresponding tumor masks, cropped the area of the 

bounding box of the CT images covered by the mask 

images, and resized the cropped image to 224 × 224 pixels 

by bicubic interpolation. The preprocessed CT images 

(ROIs) will be used for subsequent selection and extraction 

of handcrafted and deep features.  

B. Gene Data and Selection 

The gene data were obtained from tumor samples that 

surgeons remove from untreated subjects during surgery. 

The specific operation is as follows: cut a section 3-5mm 

thick slice along the longest axis of excised tumor tissue 

for RNA sequencing.  

The samples were analyzed using RNA test data based 

on the availability and quality of the tissue collected. The 

gene expression for each patient was 22,127 genes [21], 

which were estimated by fragments per kilobase of 

transcript per million (FPKM) units [20–22]. However, 

most patients have absent gene expression, or N/A. Finally, 

5587 genes with definite gene expression shared by each 

patient were initially screened and included as research 

objects for the gene data. 

 

 
                    (a) CT images (b) tumor masks 

Figure 1.  Two examples of CT image data: (a) CT images (b) tumor 
masks. 

Because the genes are still very large after initial 

screening, and the purpose of this study is to predict the 

recurrence of NSCLC, we only need to focus on genes 

related to recurrence, and genes unrelated to recurrence 

should be eliminated. Based on this, three feature selection 

methods (Chi-squared (CHI-2), F-test (analysis of 

variance; ANOVA) and least absolute shrinkage and 

selection operator (LASSO)) were used to select 

recurrence-related genes before developing the regression 

model, and their intersection was taken to determine the 

genes used for estimation [25]. Ultimately, 74 genes were 

screened. Please refer to Section III for more details. 

III. METHOD 

As shown in Fig. 2, the proposed method includes four 

steps: image preprocessing, feature extraction and 

selection, gene estimation and recurrence prediction. 

Different from conventional radiomics and DL methods 

that use a single prediction model, the proposed method is 

a dual design of a gene estimation model and a recurrence 

prediction model, based on the concept of GGR and 

GGR_fusion [17, 18], to maximizing model prediction 

accuracy and performance. The gene estimation model 

innovatively connected multiple ResMLP modules in 

series to learn the mapping relationship between CT 

images and genes by using handcrafted features, deep 

features and paired gene data, and then, the prediction 

model is used to complete the high-precision recurrence 
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prediction task using the estimated gene expression. In the 

testing phase, only CT images are required to complete the 

prediction, without any gene data, which is conducive to 

all patients with NSCLC and allows for the examination of 

patients who cannot undergo surgery. 

Next, we introduce the proposed algorithm in detail. As 

image preprocessing has already been introduced, we will 

focus on feature extraction and selection, gene estimation, 

and recurrence prediction next. 

 

 

 

Figure 2.  Overview of residual multilayer perceptrons-based genotype-guided recurrence (ResMLP_GGR) model prediction of non-small cell lung 
cancer. 

A. Feature Extraction and Selection 

To perform better gene estimation and use gene 

estimation information to guide and improve prediction 

accuracy, this study first developed a gene estimation 

model. This model combines hand-extracted low-level 

features with DL-extracted high-level semantic features to 

enrich feature sources, which serve as inputs to the gene 

estimation model. For each subject, feature extraction and 

selection included CT image feature (handcrafted and deep 

features) extraction and selection and genetic data 

extraction and selection [26–28]. 

1) Handcrafted feature extraction 

To extract and select handcrafted features, we use the 

preprocessed ROIs from the previous section, i.e., three 

slices per patient, with each slice serving as a three-

channel input. First, low-level features are extracted for 

each slice, and statistical features such as Standard 

Deviation (SD), mean, SD percentile, mean percentile, 

skewness, and kurtosis of CT images are extracted using 

the histogram statistics method [27]. The mean and SD 

percentiles were taken as 10, 25, and 50 percentiles, 

respectively. In this study, the texture features of CT 

images are also extracted. Ohanian et al. proposed that the 

Gray Level Co-occurrence Matrix (GLCM) outperformed 

several other commonly used methods for extracting 

texture features [28]. Therefore, we use the GLCM to 

extract texture features. 

Suppose f (x, y) is a two-dimensional digital image with 

a size of M × N, the maximum gray level of the image is k, 

and the GLCM is the probability P (i, j) of the occurrence 

of pixel (x, y)  with a gray level of i  and pixel 

(x + a, y + b) with a gray level of j in the statistical image. 

P (i, j) = {(x, y), (x + a, y + b) ∈ M × N | ( f (x, y) = i,  

f (x + a, y + b)= j)},                                                      (1) 

where P  denotes the matrix k × k , the pixel value of the 

image (x, y)  is i , and the pixel value of the image 

(x + a, y + b)  is j . If the distance between (x, y)  and 

(x + a, y + b) is d, and the angle with the x-axis is θ, then 

the GLCM P (i, j, d, θ)  related to d  and θ  is obtained. θ 
indicates the generation direction of the GLCM, and it is 

typically selected as 0o, 45o, 90o and 135o. 

The GLCM represents the characteristics of the gray 

value of the image in any direction of space, but it cannot 

directly measure the difference between the textures of the 

target images. Haralick et al. [29] constructed 14 types of 

statistics based on the GLCM as texture features, but if all 

the 14 types of statistics are extracted on the basis of the 

GLCM, the calculation cost will be very high, which is 

undesirable in practical situations. The study by Ulaby et al. 

[30] proved that energy, contrast, correlation, entropy and 

homogeneity are uncorrelated, and their classification 

accuracy is high. The proposed method used the GLCM to 

extract energy, contrast, correlation, entropy, and 

homogeneity (inverse disparity), and other texture features 

in each slice at 0o, 45o, 90o and 135o directions (four-way 

GLCM). 

In this study, the Laplacian of Gaussian (LoG) with five 

different filter parameters (σ = 0, 1, 1.5, 2, and 2.5) were 

used when extracting features by from ROI images using 

histogram statistics and GLCM methods [9, 17–18, 27]. 

LoG combines Gaussian and Laplacian filters that smooth 

an image to reduce noise and focus on things like rapidly 

changing areas or edge detection. Fig. 3 depicts the process 

of handcrafted feature extraction. 150 handcrafted features 

were extracted from each slice. After that, we used ANOVA 

to select 12 relevant handcrafted features [9] as one of the 

inputs to the gene estimation model. Some studies have 

shown that F-test [26, 27] can achieve the highest accuracy 

and Area Under Curve (AUC) among various feature 

selection methods when performing regression prediction 

using CT images. Hence, in this study, we used the F-test to 

Journal of Image and Graphics, Vol. 11, No. 2, June 2023

188



select relevant radiomics features for predicting recurrence-

related genes, i.e., for estimating gene expression. As shown 

on the left (pink color) of Fig. 4, after F-test, 12 handcrafted 

radiomics features were selected to participate in gene 

estimation. 

 

 

Figure 3.  The process of extracting handcrafted features from each CT 
image band. 

2) Deep feature extraction 

Compared with the subjective visual assessment of 

images by clinically trained doctors, DL can automatically 

identify features in data and provide quantitative 

assessments [9, 10]. To better reflect the heterogeneity 

information of tumors and comprehensively characterize 

the characteristics of CT images related to NSCLC 

recurrence, we extracted both low-level handcrafted 

radiomics features and deep semantic information by 

ResNet-50 to better estimate gene expression [31, 32]. We 

initialize ResNet-50 with pretrained weights from the 

ImageNet dataset and freeze the FC layers for deep feature 

extraction. He et al. proposed ResNet, which is composed 

of many residual modules. ResNet-50 is a residual network 

with 50 layers (the network depth is 50). ResNet-50 is 

frequently used for various tasks [31]. As shown in blue on 

the left of Fig. 4, using the preprocessed ROI image as 

input, F-test is added between the last convolutional layer 

and the FC layer of the pretrained ResNet-50 network for 

feature screening. Applying the F-test yielded the same 

number of deep features (12 features) as handcrafted 

features most associated with NSCLC recurrence [26, 27], 

which was another input to the gene estimation model.  

 

 

 

Figure 4.  Structure of gene estimation regression model. The black numbers on the line show the features’ number that passes the process. 

B. Gene Estimation 

To use gene expression information to improve the 

accuracy of the NSCLC recurrence prediction task, we first 

developed a gene estimation model, which used CT images 

to learn the expression of gene data, and then applied the 

learned gene estimation information to recurrence 

prediction. 

At present, a deep neural network is typically used to 

develop regression models. However, Orhan et al. proved 

through experiments that with an increase in the network 

depth, the singular values of the product matrix become 

increasingly concentrated, whereas a few singular values 

with very low frequency become arbitrarily large [33]. 

These singularities produce degenerate manifolds on the 

surface of the loss function, reducing the efficiency of 

learning. Skipping connections will remove these 

singularities and speed up learning. Considering the small 

number of training samples, if a deep model or complex 

model is used, it will, result in overfitting and poor 

performance and poor generalization ability. Inspired by 

Subramanian et al. [33], this study developed the ResMLP 

module as the feature extraction and fusion unit of the gene 

estimation regression model. 

As shown in Fig. 5, the proposed ResMLP module is 

composed of two MLPs with residual structures in series. 

The shortcut connections perform identity mapping, and 

their outputs are added to the outputs of the stacked layers 

to extract and fuse feature information of different levels, 

modalities and dimensions, which can comprehensively 

represent and fit potential gene expression functions 

related to NSCLC recurrence. For any input, it is first fed 

into the dense layer (x neurons), nonlinear activation layer 

(ReLU), and dropout layer. After the dropout, the output 

was put in the shortcut of the residual structure MLP. 

Identity mapping was performed by skip connection, and 

its output was added to the output of the stacked layer, 

passing through the two residual structure MLPs in turn. 

Each residual MLP consists of a Batch Normalization (BN) 

layer, a dense layer with x neurons, a ReLU layer, and a 

dropout layer. The BN layer can control the variance of the 

output of the previous layer, making the model more stable 

and increasing the training speed. The BN layer seeks to 

find a solution to the problem in a smoother solution 

subspace, as smoother solutions are more generalizable. 

The skip connection causes the model to have a more 

flexible structure [33]. When training, the model can adapt 

to its structure. Dropout emphasizes robustness, which 
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requires solutions to be insensitive to perturbations in the 

network configuration. In other words, a more robust 

solution has better generalization ability. 

TABLE II.  THE RESULTS FROM DIFFERENT GENE SELECTION 

METHODS 

Feature selection method 
Selected 

genes 
Accuracy (%) 

Non-selected 5587 81.14 

LASSO 1123 82.97 

F-test 131 86.89 

CHI-2 2325 83.39 

Intersection of LASSO,  

F-test, and CHI-2 

(p-value < 0.02) 

74 94.30 

 

In this study, the estimation of genes comprehensively 

uses information from different modalities, including both 

hand-extracted prior knowledge (12 handcrafted features) 

and high-level semantic information (12 deep features) 

learned and screened by a deep network (ResNet-50). We 

concatenated these 24 relapse-related multimodal 

representations to estimate gene expression (regression). 

The estimated genes used the selected 74 genes in Section 

II.  

The gene estimation model is depicted in Fig. 4. The gene 

estimation model consists of five ResMLP modules, with 

Arabic numbers in brackets representing the number of 

neurons. To increase the model’s processing speed, we use 

an end-to-end structure for the gene estimation model. 

Thus, the estimation of 74 genes no longer requires several 

regression models of the same structure with different 

weight parameters. An estimate of all 74 genes was 

achieved using only one regression model can be 

considered an ensemble model assembled from a set of 

paths, where different paths contain different subsets of 

network layers. Here, we set the learning rate to 2e-4 to fit 

the gene estimation model. The optimizer uses NAdam, 

and the loss function is the mean squared error, which can 

be calculated by Eq. (2). 

                            𝐿𝑚𝑠𝑒 =
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2,𝑛
𝑖=1                 (2) 

where  Lmse denotes the mean square error loss, n denotes 

the number of data points, y denotes the actual gene label, 

and ŷ denotes the gene prediction. 

The gene estimation model with an end-to-end structure 

(uses only one gene estimation model) achieves faster 

convergence and is more conducive to optimizing and 

improving the generalization ability. 

 

 

Figure 5.  Residual Multilayer Perceptrons (ResMLP) module. 

 

Figure 6.  Structure of recurrence prediction model.

C. Recurrence Prediction 

The proposed NSCLC recurrence prediction model is a 

robust binary classification model, which uses the 74 genes 

obtained by the previously proposed gene estimation 

model as input training a classification network, and learns 

richer and more advanced features by deepening the layers 

of the network. Compared with GGR and GGR_fusion, 

using fewer neurons results in higher robust classification 

accuracy on small datasets. In the testing phase, accurate 

NSCLC recurrence prediction can be achieved using only 

CT images without additional data. Here, the learning rate 

is set to 8e–4, and the loss function uses binary cross-

entropy. The details of the proposed NSCLC recurrence 

prediction model are illustrated in Fig. 6. 

The loss function of the NSCLC prediction model is 

defined as: 

    Lbce=-
1

n
∑ [y

i
lnŷ

i
n
i=1 +(1-y

i
)ln(1-ŷ

i
),   (3) 

where Lbce  denotes the binary cross-entropy loss, n 

denotes the number of data, y denotes the actual recurrence 

label, and ŷ denotes the recurrence prediction output. 

IV. EXPERIMENT 

All experiments in this study were conducted on a 

graphics accelerator-driven personal computer equipped 

with an RTX2080 Super 8GB discrete graphics card, an 

Intel (R) Core (TM) i7-10870H CPU @ 2.20GHz-2.21 

GHz CPU and 16GB random access memory. We used 

python 3.7 and version 2.2.0 of the TensorFlow-GPU 

library as the experimental environment. As mentioned in 

Sections II and Ⅲ, our experiment selected the data of 88 

patients from the TCIA radiogenomics dataset of NSCLC 

for recurrence prediction [20]. The data of each patient 
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include three ROI CT images and 74 different gene data. 

Each experiment was repeated 10 times with 10-fold cross-

validation to obtain a fair average performance. In each 

fold, CT images and gene expression data of patients 

(training set size of 79 or 80) were used in the training 

phase, whereas CT images of patients (validation set size 

of 9 or 8) were used only in the validation phase for 

recurrence prediction without gene expression data. We 

conducted an ablation experiment and compared related 

methods with ours with four different evaluation metrics 

using the same conditionally controlled dataset, and 

visualized the comparison results utilizing the Receiver 

Operating Characteristic (ROC) curve to demonstrate the 

superiority of our proposed method. 

A. Gene Selection Results 

As we mentioned in Section II, we applied three 

different feature selection methods and their intersection 

to select the genes most associated with NSCLC 

recurrence. As presented in Table Ⅱ, LASSO removed 

gene features with zero coefficients [27], and the 

thresholds of CHI-2 and F-test were set to p-value < 0.02, 

respectively [25–27]. The first row in the table is the 

baseline, with a total of 5587 genes, and the last row is the 

74 genes obtained by the intersection of the above three 

methods. According to the results in the table, the 

prediction accuracy of NSCLC recurrence is the highest 

when the intersection of the three methods is used. 

Therefore, the 74 genes obtained from the intersection of 

these three methods were selected for our regression model. 

B. Gene Estimation Results 

We fully used handcrafted and deep features as input to 

the gene estimation model to learn from real gene data 

(ground truth) and obtain gene estimation information as 

shown in Fig. 7. As the complexity of the gene data, we 

calculated the mean FPKM values of the estimated gene 

expression and the real gene data for all patients. As shown 

in the figure, the horizontal axis lists the names of 74 genes 

of a patient in and the vertical axis indicates the FPKM 

value of each gene. The blue line in the figure represents 

the real gene, the orange line represents the estimated gene 

obtained using the GGR method, and the gray line 

represents the estimated gene expression obtained using 

our proposed ResMLP_GGR method. Most of the 

estimated genes exhibited satisfactory performance. 

   

 

   

Figure 7.  Comparison between estimated gene values (GGR [17], ResMLP_GGR) and actual gene (ground truth) values from one patient as an 

example. The horizontal axis lists the names of 74 genes of patient, and the vertical axis indicates the FPKM value of each gene. 

C. Ablation Study 

We experimentally verify the effectiveness of each key 

component of the proposed method, all using the same 

control dataset [20]. As shown in the ablation experiments 

in Table Ⅲ, for the gene estimation model, the baseline has 

the MLP structure and estimates the genes using the 74 

gene estimation models, and proposed 1 is the same model 

but uses only one gene estimation model. Different from 

baseline and proposed 1, ResMLP was substituted for 

MLP in the baseline to obtain proposed 2. Proposed 3 uses 

the ResMLP structure and only one gene estimation model. 

Table Ⅲ illustrates that when the end-to-end structure 

(using only one gene estimation model), the recurrence 

prediction accuracy of the MLP model is improved by 2%. 

Instead of using an end-to-end structure, when only using 

the ResMLP module, proposed 2 improved AUC and 

prediction accuracy (ACC) by 5% and 3%, respectively, 

over the baseline model, with both sensitivity and 

specificity above 0.81. Among the four models, proposed 

3 achieves the best prediction results, which significantly 

improves the prediction ability. The ablation experimental 

results demonstrate that the key components of our 

proposed method are effective and necessary. 

D. Comparison with State-of-the-Art Methods 

To verify the performance of our proposed method in 

NSCLC recurrence prediction, we further compared the 

proposed method with other methods under the same 

experimental setup. As shown in Table Ⅳ, we applied 10-
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fold cross-validation 10 times to measure the average 

performance of all methods in terms of prediction accuracy 

(ACC), AUC, sensitivity, specificity, and the number of 

parameters. The results of the proposed method are bolded. 

The first four methods in the table are based on 

handcrafted radiomics features [6–9], the fifth and sixth 

methods are based on DL [9], and the method in the 

seventh row is a combination method (combination of 

deep and handcrafted features) [14]. The eighth and ninth 

rows are the methods of GGR and GGR_fusion [17, 18], 

respectively. As shown in Table Ⅳ, because the related 

radiomics or DL method only uses CT images to predict 

the NSCLC recurrence, its prediction performance is very 

limited, the prediction accuracy of traditional radiomics is 

78.61% (AUC = 0.66), whereas that of the DL-based 

method (ResNet-50) is 79.09% (AUC = 0.67). In this study, 

to improve the performance of NSCLC recurrence 

prediction and meet the demand of all patients with 

NSCLC, the same as the GGR and GGR_fusion, we are no 

longer use a single input and single prediction model to 

directly predict recurrence, but use handcrafted features 

and deep features, and gene labels first trained in a 

regression model to fit a gene estimation function. Then, 

we use a classification prediction model to predict NSCLC 

recurrence. During testing, based on the mapping 

relationship between genes and CT images, NSCLC 

recurrence prediction can be achieved using only CT 

images. 

TABLE III.  THE ABLATION STUDY RESULTS OF THE PROPOSED METHOD FOR RECURRENCE PREDICTION 

 Estimator’s structure 
Number of gene 

estimation models 
AUC ACC Sensitivity Specificity 

Baseline [17] MLP for each gene 74 0.77 0.83 0.95 0.59 

Proposed 1 MLP for mixed genes 1 0.77 0.85 0.78 0.87 

Proposed 2 [19] ResMLP for each gene 74 0.82 0.86 0.81 0.89 

Proposed 3 

 (ResMLP_GGR) 

ResMLP for mixed 

genes 
1 0.84 0.88 0.85 0.89 

TABLE IV.  PERFORMANCE OF DIFFERENT METHODS TO PREDICT NSCLC RECURRENCE 

Methods ACC (%) AUC Sensitivity Specificity Params (M) 

Wang et al. (2019) [6] PCA+SVM 67.05 0.58 0.85 0.31 - 

Lee et al. (2020) [7] Relief-F+SVM 68.18 0.56 0.95 0.14 - 

Christie et al. (2021) [8] LASSO 61.36 0.68 0.71 0.62 - 

Aonpong et al. (2020) [9] F-test + ANN 78.61 0.66 0.90 0.56 - 

Aonpong et al. (2020) [9] ResNet-50 79.09 0.67 0.89 0.59 25.56 

Aonpong et al. (2020) [9] DenseNet121 77.36 0.69 0.97 0.38 7.98 

Marentakis et al. (2021) [14] Radiomics + DL 82.08 0.71 0.97 0.51 27.16 

Aonpong et al. (2021) [17] GGR 83.28 0.77 0.95 0.59 1,679.29 

Aonpong et al.  (2021) [18] GGR_fusion 84.39 0.79 0.91 0.65 1,701.86 

Ai et. al. (2022) [19] ResMLP 86.38 0.82 0.81 0.89 1,146,92 

ResMLP_GGR (proposed) ResMLP_GGR 87.78 0.84 0.85 0.89 17.21 

 

Different from the GGR and GGR_fusion 

methods [17, 18], we proposed an end-to-end gene 

estimation model (which uses only one gene estimation 

model) based on the ResMLP module. This module can 

comprehensively integrate multimodal and multi-

dimensional data, has strong generalization ability, and can 

adapt to avoid overfitting while using small datasets. The 

improved deep MLP recurrence prediction model has 

strong learning ability, good robustness, high precision 

and fewer parameters. Unlike the GGR and GGR_fusion 

methods, a regression model can only be used to estimate 

one gene. This means that 74 gene estimation models need 

to be trained for 74 gene estimation, which is very time 

consuming and inefficient. By utilizing an end-to-end 

training approach for 74 gene estimation, the proposed 

method estimates all 74 genes at once using a single 

regression model (gene estimation model), which 

significantly reduces the training time. After using the 

ResMLP-based end-to-end gene estimation model, the 

number of parameters for the NSCLC recurrence 

prediction task (including the gene estimation model and 

the recurrence prediction model) was significantly reduced 

to 17.21M, which was 8.35M less than that when only 

using ResNet-50, whereas the number of parameters of the 

GGR and GGR_fusion method is 1,679.29M and 

1,701.86M, respectively. The prediction accuracy of the 

proposed method was also improved from 83.28% 

(AUC= 0.77) and 84.39% (AUC= 0.79) of the GGR 

method and GGR_fusion method to 87.78% (AUC= 0.84). 

Moreover, it is not necessary to use handcrafted and deep 

features and estimated gene information simultaneously 

when performing recurrence prediction training as in 

GGR_fusion, and only estimated genes can achieve state-

of-the-art prediction performance. Fig. 8 depicts the 

Journal of Image and Graphics, Vol. 11, No. 2, June 2023

192



average Receiver Operating Characteristic (ROC) curves 

of these different methods, and the results demonstrate the 

superiority of our proposed method. 

 

Figure 8.  Average ROC curve of NSCLC recurrence prediction uses 
different methods. 

V. CONCLUSION 

This paper proposed a high-precision, residual 

multilayer perceptrons-based genotype-guided method for 

NSCLC recurrence prediction, which consists of two 

models: a gene estimation model and a recurrence 

prediction model. For the gene estimation model, the 

ResMLP module is proposed, which uses two residual 

MLPs as a unit for feature extraction and fusion to build 

gene estimation functions for multimodal (handcrafted and 

deep features) inputs. The recurrence prediction model 

with a deep MLP structure uses the estimation information 

output from the gene estimation model to predict NSCLC 

recurrence. According to the experimental results, 

compared with radiomics methods, DL methods, and the 

GGR and GGR_fusion methods, the proposed 

ResMLP_GGR method can more fully mine potential 

information related to the early recurrence of NSCLC. It 

exhibits strong fusion and generalization ability, 

robustness, and high accuracy, and can predict the 

recurrence probability of all patients with NSCLC. 

However, note that the proposed method is based on a 

small public dataset (only 88 patients). Although the 

regression model we designed has significantly improved 

the accuracy of NSCLC recurrence prediction, whether 

these genes (74 genes screened for recurrence prediction) 

can be used to guide clinical diagnosis still needs to be 

verified in future studies. In our future work, we plan to 

apply the proposed algorithm to clinical diagnosis, which 

will necessitate expanding the training dataset, and 

focusing on improving the model’s prediction 

performance and generalization ability of NSCLC, 

bringing its prediction accuracy closer to that of genomics-

based methods but using only CT images. 
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