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Abstract—Deep learning and computer vision-based 

approaches incorporated with the evolution of the relevant 

technologies of Unmanned Aerial Vehicles (UAVs) and 

drones have significantly motivated the advancements of 

disaster management applications. This research studied a 

classification method for disaster event identification from 

UAV images that is suitable for disaster monitoring. A 

Convolution Neural Network (CNN) of GoogleNet models 

that were pretrained from ImageNet and Place365 datasets 

was explored to find the appropriate one for fine-tuning to 

classify the disaster events. In order to get the optimal 

performance, a systematic configuration for searching the 

hyperparameters in fine-tuning the CNN model was 

proposed. The top three hyperparameters that affect the 

performance, which are the initial learning rate, the number 

of epochs, and the minibatch size, were systematically set 

and tuned for each configuration. The proposed approach 

consists of five stages, during which three types of trials 

were used to monitor different sets of the hyperparameters. 

The experimental result revealed that by applying the 

proposed approach the model performance can increase up 

to 5%. The optimal performance achieved was 98.77 percent 

accuracy. For UAV/drone applications, where a small on-

board model is preferred, GoogleNet that is quite small in 

model size and has a good structure for further fine tuning 

is suitable to deploy.   
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I. INTRODUCTION 

Unmanned Aerial Vehicles (UAVs), also known as 

drones, have obtained significant consideration in 

different directions. Currently, drone systems with 

sufficient relevant technologies development could be 

employed in a diversity of applications, including 

security monitoring and surveillance, disaster 

management, remote sensing, search and rescue, 

construction and infrastructure inspection, precision 

agriculture, and many others. Over the last five years, 
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there is evidence of a significant increase in the 

knowledge, awareness, and popularity of drone 

applications in disaster situations. Drones appeared to 

provide significant value in disaster management when 

compared to conventional methods in terms of cost and 

efficiency [1]. They reduce the time required to locate 

victims and the time required for subsequent intervention 

by searching a large area in a short period of time [2]. 

The capability of them that have visual sensor tools for 

acquiring aerial images or videos, increase their ability to 

provide detailed information about the surrounding 

environments. Such rich information can be processed to 

both offline and real-time applications. As a result, 

computer vision-based approaches incorporated with the 

evolution of the relevant technologies of UAVs/Drones 

have significantly motivated the advancements. However, 

the accuracy of the employed approaches depends on 

different factors, such as image resolution, capturing time, 

viewing angle, illumination, different structures of aerial 

images and reference data [3].  

For disaster management applications, disaster event 

classification from the monitored images or videos is 

required. Monitoring different surrounding scenes is 

needed to be able to recognize whether any type of 

disaster is emerging, for example, fire, flood, or collapsed 

buildings. This presents a problem for the classification 

approach in computer vision and deep learning 

applications. Consequently, the prominent progression of 

the well-known scheme; the transfer learning of the 

pretrained Convolution Neural Network (CNN) model is 

investigated in this work. Since the data collection 

process is time-consuming and expensive, despite the 

existence of a dedicated dataset size [4], it is not 

sufficient to train the created CNN layers by starting from 

scratch; moreover, huge amounts of computer resources 

are required. To merit the best performance, the selected 

transfer learning scheme is suitable for analyzing in detail 

the fine-tuning process from the pertained selected 

models to our specific task. Most existing research works 

adopt the hyperparameter tuning of the pretrained CNN 

by referring to previous works. But hyperparameter 

tuning is both model and dataset-specific, thus it is 
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interesting to explore deeply the effects of each choice in 

hyperparameter tuning.  

The proposed work aimed at looking for a suitable 

pretrained model to gain the best performance for the 

studied dataset. In this research, GoogleNet [5] pretrained 

models from the source task of ImageNet [6] and 

Place365 [7] datasets were all explored as the fine-tuning 

method of transfer learning. To search for the optimal 

performance from the fine-tuning, the process of 

hyperparameters optimization (or tuning) is investigated 

and proposed as a systematic approach. The systematic 

configuration has revealed many interesting byproducts 

from our empirical study. The contributions of this work 

are as follows: 

(1) Explore a classification method for disaster events 

classification that is suitable for further study in 

disaster monitoring application. 

(2) Obtain a network that is pretrained from different 

source datasets to select the superior one. We 

explore GoogleNet models that are pretrained 

from ImageNet and Place365 datasets to find the 

appropriate one for fine-tuning the disaster events 

dataset. 

(3) Propose a systematic configuration in searching 

for the optimal hyperparameter by a fine-tuning 

scheme based on empirical study. 

II. LITERATURE REVIEWS  

A. Diaster Event Classification from UAV/Drone Data  

A disaster is an event caused by a natural or man-made 

hazard that occurs over a short or extended period. It 

results in significant physical harm or destruction, as well 

as mortality or a significant alteration in the 

environment [8]. Recently, UAVs/Drones have been 

increasingly popular in gathering images or videos since 

they are faster and more accurate than satellite imagery 

and allow for more prompt assessment. In the last decade, 

disaster events classification, identification, or disaster 

monitoring embedded by machine learning and deep 

learning techniques have been most frequently employed. 

Most previous works focus on the disaster from only one 

event such as fire or flood. Forest fire monitoring from 

aerial images using deep learning techniques was studied 

by Kim et al. [9], where transfer learning also applied in 

wildfire identification [10]. Flooding observed from UAV 

images is explored as flood detection method by 

Munawar et al. [11]. Recently, Kyrkou and 

Theocharides [12] proposed an emergency response 

application using UAV images to monitor and classify 

four disaster events using deep learning.  

B. CNN Pretrained Models  

Since the success of AlexNet [13] in the 2012 

ImageNet Large-Scale Visual Recognition Challenge 

(ILSVRC), deep learning networks based on CNN have 

been tentatively expanded as a major approach for a 

variety of applications. Year by year, deeper and/or more 

efficient architectures have been proposed and published 

as the pretrained models. It is known in the community 

that fully trains the CNN network to a specific task needs 

numerous computer resources and takes time. Most 

importantly, dataset size affects the performance. For 

these reasons, transfer of learning approach has been 

increasingly studied and many well-known pre-trained 

architectures are made public. Fig. 1 represents published 

models from ImageNet source task dataset that were 

studied by Bianco et al. [14]. The research reported by 

comparing the performance in terms of top-5 accuracy to 

model size and number of operations. Many works [15–

17] have been selected from some of these models to 

further explore and apply to their applications. For 

GoogleNet, the selected model used in our study is at the 

location marked by red rectangle in Fig. 1. Its model size 

is quite small compared to others. Although its 

performance is not the best, it is a good structure for 

further fine tuning. Moreover, model size is a concern in 

UAV/drone applications, where a small on-board model 

is preferred.  

 

 

Figure 1. Pretrained Models compared in terms of top-5 accuracy to 

model size and number of operations [14]. 

C. GoogleNet (InceptionV1) 

GoogleNet or InceptionV1 was proposed by Szegedy 

et al. [5]. The architecture consisted of 22 weighted 

layers. It was proposed under an improvement of the 

calculation resources from previous works. The 

efficiency of the network came from wider and deeper 

layers by incorporating nine modules of inception module 

on some parts of the network. Only small filter sizes of 

1×1, 3×3, and 5×5 was used in the module. Each block in 

a module can be parallel and the results from all blocks 

are concatenated to the output and send to the next 

module or next layer. It has auxiliary classifiers that are 

connected on top of the output of inception modules. 

Each auxiliary classifier has a 5×5 average pooling layer, 

a 1×1 convolutional layer, two fully connected layers, 

and a softmax layer. Detailed layers of GoogleNet can be 

referred to in [5].  
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In this research, we explore GoogleNet pretrained 

model from both source datasets which are ImageNet and 

Place365. 

D. Transfer Learning and Fine-Tuning 

The term transfer learning means the transferring of 

knowledge (in terms of weight and bias values) from 

some of the pretrained architectures trained by some large 

dataset (source task). Such knowledge from pretrained 

model is transferred to the task specific dataset. Transfer 

learning can apply by two schemes namely fixed feature 

extractor and fine-tuning. Fixed feature extractor directly 

uses the pretrained weights and biases transferred to a 

task specific with no need to retrain the network. The 

opposite is of the fine-tuning, whereby the network must 

be retrained on some parts of a network using a task 

specific dataset with weights and biases initialized from 

pretrained values. By the transfer learning method, it can 

help us create a high-performance model in a timesaving 

way rather than training a model from scratch. 

E. Hyperparameter in CNN Models and Tuning 

Methods 

There are two types of parameters that exist in neural 

networks-based algorithm. These are model parameters 

and hyperparameters. Model parameters are weights and 

biases that can be initialized and updated through the data 

learning process. Where hyperparameters cannot be 

directly estimated from data learning and must be set 

before training a model. They are used to either configure 

a model or to specify the algorithm used to minimize the 

loss function [18]. Therefore, these hyperparameters are 

needed to be fixed before running or training a model. As 

a result, methods for tuning or searching require the set of 

hyperparameters, in addition, their ranges need to be 

considered [19]. Based on the knowledge [18, 19] and 

experience, the top three hyperparameters affected the 

performance of fine-tuning CNN model are the initial 

learning rate, the number of epochs, and the minibatch 

size.  

The initial learning rate is the size of the step to 

determine how fast or slowly the algorithm descends the 

error curve. The too large or too small value can cause a 

model to never descend or to converge too slowly. It is a 

small positive value, often in the range between 0.0 and 

1.0 [18]. Traditionally, neural networks are trained using 

the stochastic gradient descent optimization algorithm. 

Then, the error gradient is used to update the model 

weights, and the process is repeated. Therefore, one 

training epoch means the algorithm has made one pass 

through the entire training data. For a model being trained 

from scratch, hundreds or thousands of epochs may be 

needed, but in fine-tuning a pretrained model, only 5 to 

100 are always suitable. The number of epochs that are 

too high always lead to overfitting. The batch size will 

define how often to update weights and biases, the 

parameters of a model. In the case of stochastic gradient 

descent, a group of samples called a “minibatch” is used 

in a single iteration. The minibatch size is a fixed number 

of training samples that is less than the entire dataset size. 

Thereby, in each iteration, the network is trained on a 

different group of samples until all samples in the dataset 

are used. The minibatch size is typically between 1 and a 

few hundred, where a value equal to 32 is a good default 

value [19]. In modern machine supported parallel tasks 

with Graphics Processing Unit (GPU) included, the 

maximum minibatch size will fix by the GPU 

specification. 

The performance of most machine learning algorithms 

depends on their hyperparameter settings [20, 21], 

including the fine tuning of the pretrained CNN model. 

To the best of our knowledge, by not using software 

packages or tools for optimization algorithms, none of the 

systematic procedures in the search for optimal 

hyperparameters is proposed as an academic empirical 

study. Only a small number of scenarios in the deep 

learning or machine learning communities were discussed 

and suggested to the researchers [18, 19]. 

III. MATERIALS AND METHODS 

A. Dataset 

This research uses the dedicated Aerial Image Dataset 

for Emergency Response Applications (AIDER) 

dataset [4], which is the same dataset used in 

EmergencyNet [22]. The dataset construction involved 

manually collecting all images for four disaster events, 

namely Fire/Smoke, Flood, Collapsed Building/Rubble, 

and Traffic Accidents, as well as one class for the Normal 

case. These aerial images for the disaster events were 

collected through various online sources. During the data 

collection process, the various disaster events were 

captured with different resolutions and under various 

condition with regards to illumination and viewpoint. 

Finally, to replicate real world scenarios the dataset is 

imbalanced in the sense that it contains more images from 

the Normal class. Table I shows summary of our studied 

dataset that consists of five classes of which there are 

four for disaster events and one normal class. In the case 

of the normal class, we did not use all the images from 

the original dataset, only 1200 was enough and suitable. 

The dataset is divided into train, validate, and test set in 

the ratio of 70%, 10%, and 20%, respectively.  

TABLE I. STUDIED DATASET FROM AIDER [4] (TRAIN: 70%, 

VALIDATE: 10%, TEST: 20%) 

Class 
Number of Samples 

Train Validate Test Total (Per Class) 

Collapsed Building 358 51 102 511 

Fire/Smoke 365 52 104 521 

Flood 368 53 105 526 

Normal 840 120 240 1200 

Traffic Accident 340 49 97 486 

Total (Per Set) 2271 325 648 3244 (All Class) 

B. Fine-Tuning Process 

Procedures involve a fine-tuning using GoogleNet 

Pretrained model which is depicted in Fig. 2. The process 

mainly consists of six consecutive procedures as follows.  
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Figure 2. Fine-tuning process of CNN pretrained network. 

1) Prepare dataset 

In this research, 80% of the studied dataset out of the 

20% for testing is split into 70% for train set and 10% for 

validate set. Each image from both train and validate set 

is resized to be the same size and used as the input image 

of the pretrained model. To prevent from overfitting in 

the fine tuning/training, augmentation techniques are 

employed to the train set. 

2) Import pretrained network 

GoogleNet pretrained networks from both ImageNet 

and Place365 source datasets are imported to Matlab. In 

this research, we conduct the empirical experiment with 

Matlab R2021a. Computer laptop of 12th Gen Intel(R) 

Core (TM) i7-12700H with 2.30 GHz processor is used. 

The installed RAM is 16 GB with 64-bit Windows 11 and 

NVIDIA GeForce RTX 3070 Laptop GPU is employed. 

3) Define layers 

The fine-tuning process starts from replacing the final 

layers of the pretrained network according to the numbers 

of class of a task specific dataset. As a result, we replaced 

the classification layer for five classes instead of 1000 

classes and 365 classes for ImageNet and Place365 

pretrained model. Then, the transferred (frozen) layers 

and fine-tuned (train) layers are defined.  To focus on the 

dataset-specific features, we force most of the lower 

layers of GoogleNet as the transferring and just some 

higher layers are fine-tuning. 

4) Set training configurations 

Before training or fine-tuning, the training 

configurations are needed to be set. This means some 

hyperparameters are needed to be specified. In this 

research, we investigated on the Stochastic Gradient 

Descent with Momentum (SGDM) learning algorithm 

with the default momentum value of 0.9. Then, the 

procedure for systematic configurations in searching for 

the optimal values of the top three hyperparameters most 

affecting the performance is proposed based on an 

empirical study that will be explained in the next sub-

section. The top three hyperparameters are the initial 

learning rate, the number of epochs, and the minibatch 

size. 

 

 

5) Train the network 

After setting all hyperparameters in the previous step, 

the selected pretrained model is then trained further (fine-

tuned) with the training set of the studied dataset. 

Therefore, as training, the model is gradually fine-tuning 

the parameters of a network by using disaster event 

images according to the setting of the hyperparameters. 

6) Validate the network 

To compare the results from many cases of 

hyperparameters setting, when each training 

configuration is finished, the fine-tuned model is then 

validated with the validation set. In this study, we use 

accuracy as a measurement merit. After that, the test set 

is applied to the fine-tuned model to compare the 

performance of the model for each configuration. 

C. Proposed Systematic Configuration of 

Hyperparameter Tuning 

The systematic configuration approach is proposed to 

optimize the hyperparameters. Each trial in the fine-

tuning process is defined as one time to fine-tune or train 

a model according to a configuration to be explored. Such 

a configuration consists of three hyperparameters setting 

values to be optimized: the initial learning rate, the 

number of epochs, and the minibatch size. All stages of 

the proposed approach are applied to the relevant models 

of each source dataset separately (ImageNet and 

Place365). Three types of trials used for the empirical 

experiments are defined as follows: 

(1) Primary/Exploration trial: 5 trials for each 

configuration 

(2) Secondary trial: 10 trials for each configuration 

(3) Confirmatory trial: 30 trials for each configuration 

Stage 1: Monitoring focus on the initial learning rate. 

Using the primary trial to first inquire the effects of the 

initial learning rate (by fixing the minibatch size to be 32). 

Response: The best two initial learning rates. 

• Define the initial learning rate as 0.01, 0.001, 

0.0001, 0.00001, and 0.000001.  

• Define the number of epochs as 10, 20, and 30. 

• Set all combination configurations from the 

defined values and name them as A01, A02, …  
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• Select the best two initial learning rate for 

exploring the next stage from the test set result. 

Stage 2: Monitoring focus on the number of epochs. 

Using the primary trial to inquire the effect of number 

of epochs by fixing each of the best two initial learning 

rates responded in Stage 1. 

Response: The best three configurations and conclusion 

about the effect of the number of epochs for each fixed 

initial learning rate. 

• Fix each initial learning rate from the best two 

responded from Stage 1. 

• Define the number of epochs as 5, 15, 25, 35, 40, 

60, 80, and 100. 

• Set all combination configurations from the 

defined values and name them as B01, B02, …  

• Compare the test results and record the best three 

configurations (consider including configurations 

A from Stage 1). 

• Analyze the effect of the number of epochs in 

response to the overall accuracy. 

Stage 3: Monitoring focus on the effect of minibatch size 

(MB) to each of the best two initial learning rates. 

Use exploration trial to inquire the effect of minibatch 

size where only the best three configurations (by using 

maximum accuracy in an exploration trial) from Stage 2 

are further explored.  

Response: To decide which value of initial learning rate 

should not be considered for next stage. 

• Define minibatch size as 16, and 64 for each of the 

best three configurations from Stage 2 and define 

its initial learning rate as another one from the best 

two selected. The number of epochs is fixed the 

same as at Stage 2. 

• Set all combination configurations from the 

defined values and name them as C01, C02, … 

• Analyze the effect of different minibatch size and  

eliminate one initial learning rate. 

Stage 4: Monitoring the effect of all minibatch sizes. 

Use secondary trial to inquire the effect of all minibatch 

sizes (which are 8, 16, 32 and 64) to the selected 

configurations from Stage 3.  

Response: The best configuration (by considering 

maximum accuracy in a secondary trial). 

Stage 5: Confirm of the best configuration. 

Use Confirmatory trial to search for the maximum 

performance of the best configuration selected from 

Stage 4. Compare maximum performance from this stage 

with the previous stage and chose the best one. 

Response: The maximum performance. 

IV. EXPERIMENTAL RESULTSS AND DISCUSSION 

A. Experimental Result 

When the proposed systematic configuration method is 

applied in the fine-tuning process, the accuracy results 

from the test set are employed to compare the 

performance. Fig. 3 shows the mean values of the 

accuracy for each primary trial of all combination 

configurations in Stage 1, where E10, E20, and E30 are 

the number of epochs that were used as 10, 20, and 30, 

respectively. Each pair of bar graphs also compares 

between pretrained source datasets from ImageNet and 

Place365. It can be clearly inferred from the figure that 

the initial learning rates of 0.001 and 0.0001 are the best 

two values that will be further explored in the next stage.  

 

 

Figure 3. Mean of accuracy from each primary trial in Stage 1. 

Table II shows the result from each primary trial in 

Stage 2 when inquiring about the effect of the number of 

epochs. The mean values of the accuracy from all 

configurations are presented, and the three best 

configurations are marked as the maximum three values 

in the Max column. The result from the pretrained source 

datasets of ImageNet and Place365 is demonstrated 

separately. In the case of ImageNet, the mean values of 

both Learning Rates (LR) are quite stable since the 

number of epochs equals 30, whereas Place365 is stable 

since the number of epochs equals 40. Overall, the 

accuracy from LR at 0.0001 is less than LR at 0.001, 

around 1% from ImageNet, and around 0.5% from 

Place365. As shown in the Max column, the best three 

configurations from both sources are those with LR equal 

to 0.001. Such three configurations of each source will be 

further explored in Stage 3.  

TABLE II.  MEAN AND MAX ACCURACY FROM STAGE 2 WHEN THE 

BEST THREE CONFIGURATIONS ARE SELECTED (MB = 32) 

 ImageNet Place365 

No. 

Epochs 

LR=0.001 LR=0.0001 LR=0.001 LR=0.0001 

Mean Max  Mean Mean Max Mean 

100 97.41  96.45 97.63  97.24 

80 97.50  96.60 97.45  97.17 

60 97.59 98.30 96.98 97.84 98.30 97.22 

40 97.92  96.94 97.57 97.99 97.07 

35 97.07  96.91 96.63  96.08 

30 97.14  96.30 96.94  96.30 

25 96.91 98.46 96.45 96.18  95.97 

20 97.28  95.86 96.82 98.19 96.45 

15 96.45 98.15 95.93 96.73  96.32 

10 96.70  95.56 96.67  95.15 

5 96.51  94.10 95.52  93.82 
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To decide which value of the initial learning rate 
should be discarded, we must concentrate on the effect 
between the selected learning rates and the minibatch 
sizes in Stage 3. Table III shows the comparison results 
when the minibatch sizes of 16 and 64 of the three best 
configurations from Stage 2 are further explored with LR 
equal to 0.0001. The table report in terms of the 
maximum accuracy in a trail and the values when 
minibatch size equals 32 from Stage 2 are also compared 
in a table. From the result, it can be concluded that with 
different minibatch sizes of 16 and 64, when LR equals 
0.0001, the performance is still less than when LR equals 
0.001 for both source datasets. Therefore, we can 
eliminate the value of 0.0001 when exploring in Stage 4. 

TABLE III.  MAXIMUM ACCURACY FROM EACH TRIAL IN STAGE 3 WITH 

DIFFERENCE MINIBATCH SIZE (LR = 0.0001 FOR MB=16 AND 64) 

ImageNet Place365 

No. 

Epochs 

Minibatch Size No. 

Epochs 

Minibatch Size 

16 (32) 64 16 (32) 64 

60 97.38 98.30 97.46 60 97.52 98.30 97.66 

25 96.95 98.46 97.19 40 97.17 97.99 96.84 

15 96.45 98.15 96.78 20 96.98 98.19 96.22 

 
When Stage 4 is applied, the three best configurations 

from Table III. are further explored in order to select the 
best configuration. In this stage, all defined minibatch 
sizes are explored using the secondary trial. For the 
ImageNet source model, we acquired the maximum 
performance, which equals 98.77, from two 
configurations: MB equals 8 of 20 epochs and MB equals 
32 of 25 epochs. We selected a configuration in which 
MB equals 32, which can be confirmed by the 
confirmatory trail in Stage 5. The response for maximum 
accuracy from 30 trials is still equal to 98.77. In the case 
of the Place365 source model, the same best performance 
was achieved, which equals 98.77 in the configurations 
where MB equals 64 of 60 epochs.  

Figs. 4 and 5 depict the confusion matrix from the test 
set result, of which the maximum performance was 98.77 
from both ImageNet and Place365 source models. Only 8 
images out of 648 are incorrectly classified from both 
models. For ImageNet source model in Fig. 4, two 
images of Collapsed Building class are classified as Fire 
class and another two are classified as Traffic Incident 
class. Whereas all images in Fire class are correctly 
classified. For Place365 in Fig. 5, the model predicts one 
of each misclassified Collapsed Building class to be one 
of the other classes and all images in Normal class are 
correctly classified. 

 
Figure 4. Confusion matrix of the maximum performance from 

ImageNet source model. 

 

Figure 5. Confusion matrix of the maximum performance from 

Place365 source model. 

Fig. 6 shows some images from the true class of 

Collapsed Building that incorrectly classified to be the 

other class. The top row are the images that classified to 

be a class of Traffic Incident (left) and a class of Fire 

(right) from ImageNet pretrained source. Whereas the 

bottom row are the images that classified to be a class of 

Traffic Incident (left) and a class of Fire (right) from 

Place365 pretrained source. 

 

  
 

  

Figure 6. Example of images in the true class of Collapsed Building that 

are incorrectly classified. 

Fig. 7 represents the images from the class of Flood 

Areas and Traffic Incident that incorrectly classified to be 

the opposite class. The top row are the images that 

classified from a class of Flood Areas to be Traffic 

Incident (left) and from a class of Traffic Incident to be 

Flood Areas (right) from ImageNet pretrained source. 

Whereas the bottom row are another two images that are 

classified in the same way from Place365 pretrained 

source. Overall, from both models, the classes of 

Collapsed Building, Flood Areas and Traffic Incident are 

the most ambiguous among the classes and are always 

incorrectly classified. 
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Figure 7. Example of images in the true class of Flood Areas and Traffic 

Incident that are incorrectly classified. 

Fig. 8 shows the confusion matrix of the worst results 

(class orders are the same as in Fig. 5) from the 

confirmatory trial in Stage 5 when 30 trails are employed 

for the best selected configuration. Fig. 8(a) is the 

performance obtained from ImageNet which equal to 

93.98 and Fig. 8(b) is the performance obtained from 

Place365 which equal to 93.21. It can be inferred from 

the results that the maximum performance yield from the 

proposed method can increase the accuracy around 5%.  

 

  
(a)  ImageNet (b)  Place365 

Figure 8. Confusion matrix of the worst results from the confirmatory 

trial of both source models. 

B. Discussion 

Based on what is well-known in the deep learning 

community about the fine-tuning that the initial learning 

rate is the most effected hyperparameter to the 

performance of a model and the best default value of the 

minibatch size is 32, the proposed method, therefore, at 

Stage 1 focus on monitoring the ranges of the learning 

rate by fixing the minibatch size to be 32. The method 

gradually explores by using three types of trials to 

eliminate the insignificant values of each hyperparameter 

and select the best one. The initial learning rate is the first 

optimal hyperparameter that can be selected in Stage 3. 

The number of epochs is the second selection, and the last 

is the minibatch size, which can be decided in Stage 3 

and Stage 4, where Stage 5 is used to confirm the best 

selected set of hyperparameters. 

For the selected GoogleNet model, the source 

pretrained dataset has no effect on the studied disaster 

events dataset. It can be inferred that both source datasets 

are similar in image properties and related to the disaster 

events dataset. As a result, the transfer learning scheme 

that employed in this research is suitable for disaster 

event classification. In terms of model complexity and 

performance compared to the other pretrained networks, 

including our experimental results, the architecture of 

GoogleNet-based layers is suitable and interesting for 

further use in disaster monitoring applications where a 

small on-board model is needed. For the model operated 

on-board the UAV, environmental concerns in terms of 

low power embedded in platforms with a minimum 

memory requirement and sufficient performance to run in 

real-time are all that need to be addressed. 

The optimal hyperparameters determined from the 

proposed systematic configurations can be studied further 

by confirming the results with some tools or software 

packages for hyperparameter optimization methods. 

V. CONCLUSION 

This research proposed a transfer learning approach for 

classifying disaster events from UAV/Drone images. 

Both ImageNet and Place365 are explored as sources of 

pretrained GoogleNet. It can be concluded that these 

different source datasets are similar in image properties, 

related to the studied dataset, and suitable to be applied as 

the fine-tuning method for disaster events classification. 

The search for the optimal hyperparameters is proposed 

as a systematic configuration procedure. The accuracy 

result from an empirical study of the proposed systematic 

approach revealed an optimal performance of 98.77. The 

obtained results were higher than a compare-based 

performance of up to 5%. 
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