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Abstract—Skeleton-based human action recognition conveys 

interesting information about the dynamics of a human body. 

In this work, we develop a method that uses a multi-stream 

model with connections between the parallel streams. This 

work is inspired by a state-of-the-art method called FUSION-

CPA that merges different modalities: infrared input and 

skeleton input. Because we are interested in investigating 

improvements related to the skeleton-branch backbone, we 

used the Spatial-Temporal Graph Convolutional Networks 

(ST-GCN) model and an EfficientGCN attention module. We 

aim to provide improvements when capturing spatial and 

temporal features. In addition, we exploited a Graph 

Convolutional Network (GCN) implemented in the ST-GCN 

model to capture the graphic connectivity in skeletons. This 

paper reports interesting accuracy on a large-scale dataset 

(NTU-RGB+D 60), over 91% and 93% on respectively cross-

subject, and cross-view benchmarks. This proposed model is 

lighter by 9 million training parameters compared with the 

model FUSION-CPA. 1 

Keywords—deep learning, Human Action Recognition (HAR), 

convolutional neural networks, Graph Convolutional 

Networks (GCNs) 

I. INTRODUCTION

In the past decade, Human Action Recognition (HAR) 

has received increasing attention among researchers as it 

provides an understanding of videos and other types of 

acquisition devices used in medical applications such as 

human-computer interaction, as well as video retrieval, 

autonomous navigation systems and frequently in video 

surveillance [1–4]. In the early days, researchers focused 

their work on using Red, Green and Blue (RGB) or 

grayscale videos to feed the HAR models [5], due to their 

availability. In recent years, however, new modalities have 

emerged [6–8] using point cloud, infrared, depth, event 

stream and other modalities for HAR. These advances may 

be traced to the development of accurate and affordable 

sensors. Our work focuses primarily on using a skeleton 

modality [9] combined with Infrared (IR) videos to achieve 

HAR, based on the fact that skeleton data contains 

information about the joints of the human body in space 

(i.e., information about x, y, z coordinates) during a time 
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series. Skeleton modality is efficient and compact for HAR 

in the case of a study which does not involve objects other 

than humans or scene context. From a biological 

perspective, we can recognize an action simply by 

observing the motion of the skeleton without the need for 

the appearance of the entire human body. Infrared 

technology is usually not used in HAR since RGB offers a 

better and richer representation of a given scene.  

However, IR operates better than RGB in the absence of 

light and it is especially efficient in capturing motion in 

dark scenes, thus providing information when that obtained 

from the skeletons is insufficient. The main problem in 

HAR is to extract discriminant spatial features and to 

capture temporal dynamics in order to comprehend human 

actions [10]. To reach this objective, researchers have thus 

tended to create sophisticated and over-parameterized 

networks, leading to complicated training processes and 

high computational costs, resulting in low inference speeds. 

For example, DynamicGCN developed in [11] contains 

around 14 million parameters just to deal with skeleton data 

and requires several days of model training with GPU on 

the NTU RGB-D dataset [9]. In addition, fusing different 

modalities to help a model generalize while training [12] is 

yet another area calling for further exploration, because 

fusion allows us to select valuable candidates from each 

modality and combine the best features to maximize 

accuracy. Another limitation is explained in [13], which 

mentions that early methods like [14] for HAR simply 

utilize joint coordinates at individual time steps, providing 

more direct information about an individual’s movement 

than raw images do. The feature vectors that are formed in 

the process are then subjected to temporal analysis. The 

limitations of these methods lie in the fact that they do not 

consider the spatial relationships between joints, which are 

essential to understanding HAR. In this paper, we develop 

a model that combines advantages from various state-of-

the-art methods [10, 12, 13], to create a lightweight 

architecture (see Fig. 1) compared with the FUSION-CPA 

model from [12], while maintaining/improving accuracy. 

The first step in addressing these limitations is to employ 

graph-based models [15] that have been introduced to 

encode and model dynamic skeleton sequences, chosen for 
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their robust manner of representing structured data. The 

first of such models, the Yan et al. model [13] named 

Spatial-Temporal Graph Convolutional Networks (ST-

GCN) for skeleton-based action recognition, laid the 

foundations for subsequent works including [16, 10] that 

followed. Graph Convolutional Networks (GCNs), 

considered a variant of Graph Neural Networks (GNNs), 

generalize the concept of Convolutional Neural Networks 

(CNNs) to the extent that early CNNs were generally 

deployed using regular data or Euclidean structured data. 

An important amount of data in real-world applications are, 

however, non-Euclidean graph-based structures. Indeed, 

the recent advancements in GNNs are based on this concept 

of non-regularity in data. Some examples are semi-

supervised learning [15], image classification and traffic 

prediction. The second step in dealing with limitations is to 

create a multi-stream architecture with an intermediate 

fusion strategy [17] in order to capture rich and useful 

spatiotemporal features extracted from skeleton joint and 

IR video input. 

 

 

Figure 1. The main view of the proposed model with its different 

branches. C: for concatenation scheme. 

The first branch, which is called the skeleton-branch as 

explained in [10], is composed of 3D joint positions as the 

first input, motion velocity as a second input and relative 

distance (distance between the spine joint and the rest of 

the joints) as the third input. The second branch, called the 

IR-branch as explained in [12], is solely composed of an IR 

sequence of images. Intermediate fusion, also known as 

feature-level fusion, uses convolutional blocks to transform 

raw data inputs into a higher-level dimension / 

representation by mapping them through a stack of layers. 

After merging the feature representation, we obtain 

multimodal feature maps used afterward for recognition 

purposes. The intermediate fusion is equipped with an 

attention mechanism [10] that identifies the most important 

joints from a skeleton sequence and helps the network 

extract features discriminately. The contributions of the 

study reported here are multiple: 

• We changed the skeleton-branch backbone from a 

ResNet18 that deals generally with images as 

inputs to the ST-GCN model which has 

demonstrated its efficiency when dealing 

specifically with skeleton data. We also added sub-

inputs to ST-GCN, the original ST-GCN including 

joint input only. In what follows, we explore three 

inputs (joints, velocity, relative distance to spine 

joint), see Fig. 2. 

• The skeleton branch is equipped with Dynamic 

Representation (DR) from the SGN model. 

• Feature fusion is a question of adding lateral 

connections to the architecture that have proved to 

be practical and effective in dealing with skeleton 

data merged with other modalities like IR. These 

connections allow the features to travel from one 

stream to another to share useful information while 

creating characteristic extracted features. 

• The model was trained on a large-scale dataset, i.e., 

NTU RGB+D 60, and provided satisfactory results 

while retaining good accuracy with fewer trainable 

parameters compared to [12]. 

 

 

Figure 2. The framework of the proposed end-to-end SIRFusion model. It consists of a skeleton branch, an IR branch and a fusion module. In DR, we 

use embedding to obtain the Dynamic Representation of a joint and we merge information related to the position, velocity and relative distance. Att is 

the attention mechanism used to extract more discriminant features. CNNs are Convolutional Neural Networks based on FC convolutional layers. 

II. RELATED WORK 

In early studies, RGB-based methods were wide-spread 

among researchers. RGB data usually contains rich 

appearance information when capturing scene context; the 

data is easy to collect and RGB sensors (cameras) are 

everywhere [18, 19]. However, attaining HAR from RGB 

data often proves challenging on account of variations in 

background, illumination conditions and viewpoints. An 

additional challenge involves large-scale data size, 

resulting in high computational costs when modeling fine-

grained spatio-temporal relationships [18], a key concept 

for HAR. 2D, 3D-CNNs or RNNs-based methods depend 

heavily on the RGB modality to achieve HAR. They began 

with handcrafted feature-based approaches, such as the 

space-time volume-based methods [20, 21], dense-

trajectory methods [22, 23] and Space-Time Interest Point 

(STIP)-based methods [24]. These methods were suited for 
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RGB video-based HAR. Afterward, Deep Learning 

techniques showed great progress and started to take center 

stage. These frameworks were divided into three 

categories, namely, 2D Convolutional Neural Networks 

(CNNs) including two-stream architectures [25], 

Recurrent Neural Networks (RNNs) [26] and finally 3D 

CNN-based architectures [27, 28]. 

Nevertheless, when the above-mentioned methods were 

applied under skeleton data as in earlier works, the CNN 

or RNN-based models tended to ignore spatial 

configurations as mentioned in [10]. Consequently, a new 

alternative was needed to model the spatial features and 

temporal dynamics of skeletons, leading to the 

introduction of graph-based methods, in particular Graph 

Convolutional Networks (GCNs).  

Yan et al. [13] initially introduced a generic 

representation applied to recognize actions in skeleton 

sequences by exploiting graph neural networks to design a 

spatial-temporal graph-based model. This baseline, named 

ST-GCN, was a milestone for future works. After this 

work, Song et al. [29, 30] developed a subtle multi-stream 

GCN with ST-GCN as a baseline to test the effect of the 

occlusion problem in the HAR task. Li et al. [31] proposed 

an Actional-Structural GCN (AS-GCN) with an encoder-

decoder structure to capture action-specific latent 

dependencies, combined with structural links to represent 

higher-order dependencies. Peng et al. [32] noted that 

graph structures in GCNs are pre-defined, so they 

proposed an automatically designed GCN with a Neural 

Architecture Search (GCN-NAS). Specifically, they 

explored more implicit correlations between joints, 

exploiting multiple dynamic sub-structures to build their 

search space. Shi et al. [33] developed a Two-stream 

Adaptive Graph Convolutional Network (2s-AGCN) in 

which the topology of the graph may be either uniformly 

or individually learned using the backpropagation 

algorithm. The model accepts two inputs, referred to as 

first-order (skeleton joints) and second-order information 

(lengths and directions of skeleton bones). Zhang et 

al. [16] added a semantic level to joints, whereby each 

time a frame is loaded, the joint type (e.g., head, hand, etc.) 

and the frame index are provided. This semantic level 

enables the network to enhance the relationship between 

joints, thus, enhancing the feature representation 

capability. MS-G3D presented in Liu et al. [34] features a 

multi-scale aggregation scheme to connect joints across 

space and time. The authors implemented a spatio-

temporal operator called G3D to achieve feature 

extraction. 

Despite the fact that such sophisticated methods provide 

considerable performance, the computational cost is an 

issue that needs to be resolved in the quest for real-time 

recognition and hardware implementation (our next step 

and the subject of upcoming research). In this way, 

combining the positive specifications of certain models to 

improve performance is an ongoing challenge. 

III. SKELETON AND INFRARED FUSION 

We have built a deep neural network combining 

skeleton and IR input data, named Skeleton and InfraRed 

Fusion (SIRFusion). The architecture consists of two 

branches in parallel with an intermediate fusion between 

them and an Multi-Layer Perceptron (MLP). The first 

branch deals with skeleton data, and the second branch 

interprets IR videos. After each stream fine-grains its data, 

the resulting features are fused with a concatenation 

scheme. We also add the extracted features from the fusion 

module to the concatenation. MLP comes into play after 

the fusion as the last stage stream, providing a probability 

density. The whole network undergoes an end-to-end 

training process to optimize the classification score. 

We assume the input set is defined as {S = Sj,t,k}; the 

indexes are defined as follows: j: joint index, t: frame index 

and k: coordinate axis (3D coordinates: x, y and z). For an 

IR sequence set, we note I = {It} where the index t varies 

between {1,...,T}, T being the maximum number of frames 

that a sequence can indulge. This number is experimental 

and T = 20 happens to be a compromise between accuracy 

and the volume of input. 

A. Skeleton Branch 

This stream is built using the ST-GCN model to exploit 

the concept of correlation between joints/nodes within the 

same frame. The model adopts Graph Convolutional 

Networks (GCNs) to search for correlations in skeleton 

data. There are two types of GCN-based methods, the first 

one based on predefined connections of the graph (edges) 

using a manually designed rule [13]. The second method 

is an adaptive graph, meaning it learns the topology of the 

graph adaptively [33]. In other words, the topology of the 

graph can be learned either informally or individually by 

the Back Propagation (BP) algorithm. 

There are different ways to visualize a skeleton 

sequence. It can be represented by the 2D or 3D 

coordinates of the body’s joints/nodes in subsequent 

frames. Prior work [35] combined all joints through their 

coordinate vectors and outputted a mono-feature vector 

per frame, this input in turn feeding a model based on 

temporal convolution equipped with residual connections. 

However, the ST-GCN model uses a spatial-temporal 

graph to construct structural and hierarchical forms 

representing more accurate skeleton data. In other words, 

the V (V: Nodes) intra-body joints that form a skeleton over 

T frames (duration) and conceptualize the inter-frame 

connection, will construct a spatial-temporal graph 

denoted G = (V, E) {V: joints/nodes, E: edges}. 

1) Normalization process: To better exploit skeleton 

data, we definitely need to subject the skeleton sequence 

to a normalization process that translates the camera 

coordinate system to the spine joint of the main subject, as 

per previous studies [10, 12, 13] (see Fig. 3). We calculate 

the translation vector used on the first frame and then we 

apply it to the rest of the frames, creating what we can call 

a sequence-wise normalization. The new local coordinate 

system is calculated as follows: 

 S’ = S(:,:,:) − S(1,0,:) (1) 

S’ denotes the normalized skeleton sequence. The first 

index j = 1 of S matches with the middle spine joint/node 

using the Kinect 2 topology [36], t=0 corresponds to the 
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first frame and. means that all coordinates/dimensions (x, 

y and z) are taken into consideration. 

 

 

Figure 3. Schema that shows the normalization process applied to the 

skeleton data before training. The camera coordinate system, shown as 

the red coordinate system, is translated through the black line to the new 

coordinate system in green that refers to the location of the spine joint of 

the main subject in the normalization process. The main subject is 

represented as the skeleton in orange which is considered as the 

sequence’s first frame. 

 

Figure 4. Transforming skeleton sequence to 2D maps (X, Y and Z 

maps/matrices). For each x, y and z coordinate of a skeleton 25 joints are 

collected in a column, and the column is considered the height of the 

maps/matrices. The row of a map is the different values of the same 

arrangement of joints over time i.e., tracking the joints over time. 

2) Skeleton sequence to 2D maps/patch: In order to 

make skeleton data exploitable by a convolutional layer, 

we can map a skeleton sequence containing the different 

positions of the subject performing an action to an 

image [13] (see Fig. 4). The image has three channels 

corresponding to X, Y and Z matrices containing the 

coordinates of all joints during the entire action period. A 

column is a collection of all V joints {V = 25} [9], and a 

row shows a joint/node coordinate throughout all the 

frames. Like in [12] a dataset normalization is applied; cmin 

and cmax are respectively the minimum and maximum 

values that a joint coordinate can take throughout the entire 

dataset. The new mapping is then calculated as follows: 

 �̂� =  
𝑆′− 𝑐𝑚𝑖𝑛

 𝑐𝑚𝑎𝑥 − 𝑐𝑚𝑖𝑛
 (2) 

The normalized skeleton map Ŝ = Ŝj,t,k is in the range [0, 

1] to fully exploit convolutional layers. Unlike Ref. [12], 

there is no input resizing to fit the network because this is 

no longer needed. 

3) Multi-subject network: This model, specifically the 

skeleton branch, is flexible and accepts various subjects. 

Like Ref. [13], the input matrix IN = [n, c, t, v, m = 2], {n: 

batch size. c: channels x, y and z. t: number of frames. v: 

number of joints. m: number of subjects} where m denotes 

the maximum number of subjects the model will process. 

A simple trick is adopted to obtain the right mapping by 

reshaping the input matrix to IN = [n × m, c, t, v | ×: 

multiplication]. The number of subjects is limited to two, 

to comply with the NTU RGB+D dataset [9]. However, 

this model may accept multiple subjects if the need arises. 

If there is only one subject in the action, the rest of the slot 

(m = 2) will be filled with zeros to avoid bugs in 

calculations.  

4) Graph Convolutional Network (GCN) 

implementation: Implementing a GCN (graph-based 

convolution) requires certain intermediate steps compared 

with 2D or 3D convolutions. The ST-GCN model acquires 

an equivalent implementation of GCNs as discussed in 

Kipf and Welling [15]. The connections of body joints in 

the same frame are represented by an adjacency matrix A 

alongside the identity matrix I corresponding to self-

connections of the nodes/joints. The following formula in 

Eq. (3) was developed by Kipf and Welling [15] to define 

the propagation rule for information across the graph, 

which is a key component in conceptualizing GCNs. This 

rule updates the feature representations of the nodes in the 

graph. By applying this propagation rule iteratively, the 

GCN can learn representation of a given graph, in our case, 

the skeleton graph. In the final stage, this graph can be 

exploited for classification tasks. 

 𝑓𝑜𝑢𝑡 = 𝜎(�̂�−
1

2 .  𝐴 ̂.  �̂�−
1

2 . 𝑓𝑖𝑛 . 𝑊) (3) 

where fin and fout are respectively input and output feature 

maps. 𝐴 ̂ =  𝐴 +  𝐼  is the adjacency matrix with self-

connections of the undirected graph �̂� = ∑(Â𝑖𝑗). Here W 

is the weight matrix containing trainable parameters. σ is 

the ReLU activation function. In practice, the input feature 

map is represented via a tensor of dimensions (C, T, V) 

under the spatial-temporal case. We perform the graph 

convolution by using a standard 2D convolution conv(fin) 

= fin ·W and the resulting tensors are multiplied to the 

normalized adjacency matrix �̂�−
1

2 .  𝐴 ̂.  �̂�−
1

2 . When a 

subject performs an action, joints tend to move in groups, 

as one joint may link to various body parts. These links 

may be of varying importance in illustrating the dynamic 

aspect of these parts. Accordingly, ST-GCN added a 

learnable mask M applied throughout every layer inside 

the spatial-temporal graph convolutional block. This 

learnable edge importance weighting [13] enables a joint 

feature to scale its contribution to the neighboring joints. 

To implement this learnable mask, the adjacency matrix Â
 

is accompanied by a learnable parameter matrix M, Â
 
⊙ 

M, where the operation ⊙ denotes the element-wise 

product. M initialization is a matrix of ones. 

5) Attention mechanism: Attention mechanisms have 

gained a fair amount of popularity in sequence modeling 

in the accomplishment of numerous tasks. The concept of 

attention is when a model (or human perception in general) 

attends to and focuses on specific joints of the body to 

extract selective information about these joints during a 

specific frame. The attention module used in this work is 

inspired by Song et al [10]; the module is shown in Fig. 5.
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Figure 5. Workflow of ST-JointAtt (attention mechanism) taken from EfficientGCNv1 model [10]. The model extracts selective information about a 

skeleton movement by focusing on the most relevant joints describing an action. Here C, T and V are respectively input channels, 20 frames, and 25 

skeleton joints, ⊗ denotes the outer-product, rrd is the reduction coefficient, BN represents Batch Normalization, Sigmoid and Hardwish are activation 

functions. (Best viewed in color) 

The input features are separated into two categories: 

averaged-joint (i.e., poolv(.)) and averaged-frame (i.e., 

poolt(.)). Indeed, intuitively the spatial and temporal 

information could be relevant to each other, unlike the 

previous attention modules that tend to be implemented by 

a Multi-layer Perceptron (MLP) fashion (or a bloc stacking 

convolutional layer, batch normalization layer and 

activation function). Next, the resulting pooled vectors are 

merged together with concatenation (stacking the features). 

This way, the features are prepared for the following 

process. After that, the features are fed to an FC layer (the 

parameter W in Eq. (4) is represented practically by a 

convolution layer) to obtain more compact information. 

Furthermore, as we need to calculate the attention scores 

at the joint-level and frame-level, we use two separate FC 

layer blocs, i.e., different network is assigned to each 

category (joint-level FC layer and frame-level FC layer) to 

allocate leaning weights (Matrices Wv and Wt) to each 

category distinctively. This way, the attention module will 

learn efficiently. Finally, we apply an outer-product 

multiplication to the joint and frame scores previously 

calculated in order to reconstruct the feature map fout with 

the same dimensions as the input feature map fin. The 

formula that governs this module is as follows: 

finner = θ((poolt(fin) ⊕ poolv(fin)) · W) 

(4) 

fout = fin ⊙ (σ(finner · Wt) ⊗ σ(finner · Wv)) 

Here, the feature maps are denoted fin and fout for input 

and output respectively, ⊕ is used for concatenation, ⊗ is 

the channel-wise outer-product, ⊙ denotes the element-

wise product, poolv(.) is the average pooling applied at 

joint-level and poolt(.) is applied at frame-level, σ(.) and 

θ(.) are the activation functions Sigmoid and Hardwish, 

and W are learnable weights/parameters. 

B. IR Branch 

When a subject performs an action, the space that the 

subject takes up inside a frame is relatively small in 

comparison to the whole video frame. To capture the 

region of interest in which the action happens, 2D skeleton 

data are used to locate this area, even in the case of a multi-

subject scene. IR sequence input is processed by a 3D 

CNN. 

1) Cropping and multi-subject localization: To 

achieve complex video understanding tasks, a 3D CNN 

typically contains a large number of training parameters. 

To help the model process more quickly, frame sequence 

is downscaled to minimize memory usage. We may lose 

some information during the process, but such losses are 

not alarming, since the background contribution is 

minimal to the context of actions and we privilege the 

model concentrating on the subject. A cropping strategy is 

adopted to help the network focus on the subject. First, we 

project 3D skeleton data onto the 2D frames. Then, 

minimal and maximal pixel coordinates are calculated 

from the totality of frames and joints. After that, using the 

pixel positions, a bounding box is used to extract the 

volume of the action (the subject through spatial-temporal 

dimensions). This method can be used for multi-subject 

detection. The bounding box will simply expand to wrap 

all subjects. 

2) Sampling: A 3D CNN requires a fixed number of 

frames T in each IR sequence. In order to determine T, the 

first method is a simplistic approach that considers 

subsequent frames until reaching the number T. This 

method comes with drawbacks, since the first frames may 

not capture the totality of meaningful action. The second 

approach consists in dividing the IR sequence into 

equidistant segments or windows (e.g., 1 segment = 8 

frames) and selecting a random frame from each segment. 

At the end, a sequence is formed of the size T.  

C. Fusion Module 

Intermediate fusion has proved its efficiency, as 

reported in many works [37]. It can effectively exploit the 

complex correlation between two different modalities. 

This fusion module is used as a link between the two 

branches (skeleton and IR). In this case, an intermediate 

fusion precedes the late fusion. It helps enrich the final 

fusion with more pertinent feature maps. The formula 

behind this bloc is as follows: 
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finner = fskl + σ(σ(fir∙W1 + b1)∙W2 + b2)) 

(5) 

fout = Att(finner)∙W3 + b3 

where fir and fskl are feature maps from the IR branch and 

the skeleton branch (ST-GCN network) respectively, σ(.) 

is the ReLU activation function, Att(.) is the attention 

function as explained in Section III.A5, W1,2,3 are trainable 

parameters and b1,2,3 are biases. 

To understand the flow of this module. In the first row 

of Eq. (5), the feature map coming from the IR branch 

needs to be upsampled and processed to match the feature 

map of the skeleton branch, this is where CNN1 and CNN2 

introduce the learning parameters W1, b1 and W2, b2. Once 

the features have matching dimensions, they are combined. 

In the second row of the same equation, the attention 

module Att(.) is used at this stage to extract informative 

features. CNN3 which introduces W3 and b3 is applied at the 

end of the module to cast the feature map to the proper 

dimensions. The ReLU activation function is used after 

each Convolution to introduce the nonlinearity which 

helps the module to learn efficiently. 

D. Mainstream 

The previous Sections III.A and III.B have explained 

the feature extraction step to obtain a feature vector from a 

skeleton branch and another feature vector with the same 

dimensions from the IR branch. An MLP is a block of 

successive layers (batch normalization layer, convolution 

layer, activation function, etc.) implemented after the 

fusion scheme (e.g., concatenation) to train the rest of the 

network on mix modalities and generally finishes with a 

Softmax activation function to calculate the probability 

distribution related to each class (action) in a dataset. 

IV. EXPERIMENTS 

In this section, we evaluate the performance of our 

model using the NTU RGB+D large-scale dataset [9]. The 

final results are reported in Table I. Most displayed models 

are CNN-based and LSTM-based models, the last ones are 

GCN-based networks. 

A. Dataset 

We used the NTU RGB+D 60 indoor large-scale dataset 

shared by Shahroudy et al. [9]. The authors used Microsoft 

Kinect v2 sensors, which offer four data modalities (RGB, 

depth maps, IR and skeleton), so we selected the IR and 

skeleton modalities for the present project. The dataset 

contains 56,880 sequences. The actions are performed by 

40 different subjects providing 60 action classes and the 

classes are divided into health-related actions, daily and 

mutual actions. The human skeleton is represented by 25 

joints, each joint localized by its 3D coordinates x, y and 

z. The IR sequences are collected with a size of 512×424; 

this size is reshaped/cropped in a preprocessing stage 

before training. The dataset is split into 2 benchmarks: 

a) Cross-Subject (CS): Splitting 40 subjects into 2 sets 

containing 40,320 sequences for training and 16,560 for 

evaluation. 

b) Cross-View (CV): the data collected from cameras 2 

and 3 are regarded as the training set (37,920 sequences); 

the remainder of the acquisitions with camera 1 are 

included in the evaluation set (18,960 sequences). 

TABLE I. COMPARISON BETWEEN OUR WORK AND STATE-OF-THE-ART 

(SOTA) MODELS ON THE NTU 60 DATASET, ACCURACY IN (%) 

Method Skeleton RGB Depth IR CS (%) CV (%) 

Lie Group [38] X - - - 50.1 82.8 

HBRNN [39] X - - - 59.1 64 

Deep LSTM [9] X - - - 60.7 67.3 

PA-LSTM [9] X - - - 62.9 70.3 

ST-LSTM [40] X - - - 69.2 77.7 

STA-LSTM [41] X - - - 73.4 81.2 

VA-LSTM [42] X - - - 79.2 78.8 

TCN [35] X - - - 74.3 83.1 

C+CNN+MTLN 

[43] 
X - - - 79.6 84.8 

Synthesized 

CNN [44] 
X - - - 80 87.2 

3scale ResNet 

[45] 
X - - - 85 92.3 

DSSCA-SSLM 

[46] 
- X X - 74.9 - 

[47] X - X - 75.2 83.1 

CMSN [48] X X - - 80.8 - 

STA-HANDS 

[49] 
X X - - 84.8 90.6 

Coop CNN [50] - X X - 86.4 89 

ST-GCN [13] X - - - 81.5 88.3 

RA-GCNv2 [30] X - - - 87.3 93.6 

2s-AGCN [51] X - - - 88.5 95.1 

our proposed 

methods: 

Skeleton network 

X - - - 82.3 89.5 

IR network - - - X 89.8 93.8 

SIRFusion X - - X 91.1 93.7 

 

B. Implementation Details 

1) Network settings: The Dynamic Representation (DR) 

or embedding is set to 16 layers, keeping in mind that the 

weights of the layers are not shared for velocity, position 

or relative distance. The skeleton branch input size is set 

to {N: batch size, C: 3 input channels, T: 20 frames, V: 25 

joints, M: 2 subjects}, input channels are C=3 for x, y and 

z, the input of ST-GCN blocs is 16 layers according to the 

encoding of the DR of position, velocity and relative 

distance. The output of the ST-GCN bloc is 512, the 

adjacency matrix A is 25×25. The attention mechanism 

input and output are set to 256 layers with a reduction ratio 

of 2. The IR branch requires a fixed input size of 112×112. 

CNN1, CNN2 and CNN3 are used to reshape the feature 

maps from 512 layers to the same size 512 layers through 

intermediate sizes 500, 1, and 256 layers respectively. 

Batch normalization, dropout, Softmax, and ReLU 

nonlinear activation functions are used. 

2) Training settings: All training was conducted on the 

Pytorch framework with one GPU Tesla V100s Card from 

the University Cluster (CCUB). We used the Adam 
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optimizer and we set the initial learning rate to 0.0001 with 

a consistent value during training. The batch size was set 

to 16 in order to fit in most GPUs. To avoid gradient 

exploding issues, gradient clipping was applied. Training 

was finished after 15 epochs. The loss function used to 

train the model for classification was cross entropy. 

3) Results: We studied the branches individually 

(skeleton network and IR network) and then we compared 

them to the SIRFusion fused model. The accuracy metric 

was used to compare the SOTA models on NTU 60 dataset.  

The confusion matrix (see Fig. A1) demonstrates the 

efficiency of the skeleton network classifying action (only 

the skeleton branch was trained) with dense kinetic 

movements/motion such as falling, walking towards or 

away from other subjects, jumping, etc., showing an 

accuracy of over 96%. On the other hand, actions with less 

kinetic movement such as reading or touching the head are 

more challenging to classify, showing less than 53% 

accuracy due to the high similarity of frames. The issues 

of frame similarity and object-related actions in a scene are 

two limitations that affect skeleton data in general. We 

suspect this problem cannot be solved without the 

intervention of another modality (IR, RGB, etc.). The 

experiments also revealed a major contribution of the IR 

branch. When predicting the action of writing for example 

(a tricky action with low kinetic movement) using the IR-

based network (only the IR branch is trained while the 

skeleton branch is discarded), the output accuracy was 

88% (see Fig. A2), much better than a prediction from the 

skeleton-based network (only the skeleton branch is 

trained while the IR branch is discarded) with only 43% 

accuracy. We found that for certain actions, such as 

playing with a phone or making/answering a phone call, 

the skeleton network proved more accurate with a 

difference of 13% and 3% respectively. This finding 

reinforces the idea that position information and visual 

information contribute beneficially and mutually to each 

other (see Fig. A3). Nonetheless, in exceptional cases 

associated with object-related actions such as playing with 

a phone/tablet, the model tended to mismatch the action 

with writing. There are two possible causes for this issue. 

First, it is possible that object information was lost during 

the resizing stage. Second, as IR data is a grayscale image, 

additive noise might confuse the model prediction. 

The performances of SIRFusion shown in Table I 

almost outperform the mentioned SOTA methods. In the 

mono-modality methods, three typical methods should be 

pointed out. The first model is ST-GCN [13], the most 

renowned baseline for skeleton-based human action 

recognition. SIRFusion leads over 9.6% on CS benchmark 

and 5.4% on CV benchmark. The second method 2s-

AGCN [51] is another famous backbone for skeleton-

based action recognition. SIRFusion baseline outperforms 

2s-AGCN in CS benchmark with a lead of 2.6%, even 

thought, it is slightly less efficient in CV benchmark with 

a deference score of −1.4%. The third method is STA-

LSTM [41] which is also known for being 

strengthened/enhanced by an attention module, in 

comparison to STA-LSTM, our model is outperforming 

with a difference of 17.7% and 12.5% in respectively CS 

and CV benchmarks. One of the reasons might be in the 

used attention module, the authors applied the attention 

module individually for frames and joints. Contrary with 

the attention module implemented in our model SIRFusion, 

it works cooperatively on frames and joints as explained in 

Section III.A5. For multi-modal methods mentioned in 

Table I, SIRFusion seems to provide fair performances 

compared with them and proves that the IR modality is 

also applicable for action recognition. In terms of 

compromise, FUSION-CPA [12] slightly outperforms 

SIRFusion in accuracy. Nevertheless, FUSION-CPA [12] 

has nine million training parameters more than SIRFusion, 

which implies an increase of model complexity and 

computational costs. 

V. CONCLUSION 

The model developed here is an end-to-end trainable 

network exploiting 3D skeleton data alongside infrared 

videos to achieve Human Action Recognition (HAR). The 

model consists of two branches/streams (the skeleton 

branch and the IR branch). The skeleton branch is used to 

extract discriminant features with the GCN-based method, 

spatial-temporal convolutions and an attention mechanism. 

The IR branch deals with videos or cropped videos using 

a 3D CNN. The two branches are fused in several stages to 

synchronize the branches’ feature maps for more accurate 

results and a classification prediction is returned at the end 

of the model. Each branch considered individually 

provides reasonable performance, but when merged 

together the results are greatly improved. Compared with 

the model introduced in the original paper (FUSION-CPA), 

the present model is lighter by 9 million training 

parameters thanks to the ST-GCN model. Our model 

illustrates the potential of infrared data, particularly in 

applications where the RGB modality may not operate due 

to illumination conditions (night scenes). Given the design 

of this network, changes and improvements are easy to 

implement. In future work, we will focus on further 

reducing training parameters by changing the 3D CNN, 

and on identifying more robust ways of fusing features. 
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APPENDIX 

In this appendix reside three figures representing the 

confusion matrices to showcase the results of this paper 

model. 
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Figure A1. Confusion Matrix for the Skeleton-branch. 
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Figure A2. Confusion Matrix for the IR-branch. 
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Figure A3. Confusion Matrix for the SIRFusion model. 

REFERENCES 

[1] G. Cheng, Y. Wan, A. N. Saudagar, K. Namuduri, and B. P. Buckles, 

“Advances in human action recognition: A survey,” arXiv preprint, 

arXiv:1501.05964, 2015. 

[2] M. Lu, Y. Hu, and X. Lu, “Driver action recognition using 

deformable and dilated faster R-CNN with optimized region 

proposals,” Applied Intelligence, vol. 50, no. 4, pp. 1100–1111, 

2020. 

[3] O. Liouane, S. Femmam, T. Bakir, and A. B. Abdelali, “Novel 

DVHOP algorithm-based machines learning technics for node 

localization in rang-free wireless sensor networks,” International 

Journal of Informatics and Communication Technology (IJ-ICT), 

2023. 

[4] O. Liouane, S. Femmam, T. Bakir, and A. B. Abdelali, “Improved 

two hidden layers extreme learning machines for node localization 

in range free wireless sensor networks,” J. Commun., vol. 16, no. 

12, pp. 528–534, 2021. 

[5] R. Poppe, “A survey on vision-based human action recognition,” 

Image and Vision Computing, vol. 28, no. 6, pp. 976–990, 2010. 

[6] Y. Zhao, R. Yang, G. Chevalier, X. Xu, and Z. Zhang, “Deep 

residual BIDIR-LSTM for human activity recognition using 

wearable sensors,” Mathematical Problems in Engineering, vol. 

2018, 2018. 

[7] B. R. Pradhan, Y. Bethi, S. Narayanan, A. Chakraborty, and C. S. 

Thakur, “N-har: A neuromorphic event-based human activity 

recognition system using memory surfaces,” in Proc. 2019 IEEE 

International Symposium on Circuits and Systems (ISCAS), IEEE, 

2019, pp. 1–5. 

[8] A. D. Singh, S. S. Sandha, L. Garcia, and M. Srivastava, “Radhar: 

Human activity recognition from point clouds generated through a 

Journal of Image and Graphics, Vol. 11, No. 4, December 2023

318



 

millimeter-wave radar,” in Proc. the 3rd ACM Workshop on 

Millimeter-Wave Networks and Sensing Systems, 2019, pp. 51–56. 

[9] A. Shahroudy, J. Liu, T.-T. Ng, and G. Wang, “Ntu RGB+ D: A 

large scale dataset for 3d human activity analysis,” in Proc. the 

IEEE Conference on Computer Vision and Pattern Recognition, 

2016, pp. 1010–1019. 

[10] Y.-F. Song, Z. Zhang, C. Shan, and L. Wang, “Constructing 

stronger and faster baselines for skeleton-based action recognition,” 

IEEE Transactions on Pattern Analysis and Machine Intelligence, 

2022. 

[11] F. Ye, S. Pu, Q. Zhong, C. Li, D. Xie, and H. Tang, “Dynamic GCN: 

Context-enriched topology learning for skeleton-based action 

recognition,” in Proc. the 28th ACM International Conference on 

Multimedia, 2020, pp. 55–63. 

[12] A. M. De Boissiere and R. Noumeir, “Infrared and 3D skeleton 

feature fusion for RGB-D action recognition,” IEEE Access, vol. 8, 

pp. 168297–168308, 2020. 

[13] S. Yan, Y. Xiong, and D. Lin, “Spatial temporal graph 

convolutional networks for skeleton-based action recognition,” in 

Proc. Thirty-Second AAAI Conference on Artificial Intelligence, 

2018. 
[14] B. Fernando, E. Gavves, J. M. Oramas, A. Ghodrati, and T. 

Tuytelaars, “Modeling video evolution for action recognition,” in 
Proc. the IEEE Conference on Computer Vision and Pattern 
Recognition, 2015, pp. 5378–5387. 

[15] T. N. Kipf and M. Welling, “Semi-supervised classification with 

graph convolutional networks,” arXiv preprint, arXiv:1609.02907, 

2016. 
[16] P. Zhang, C. Lan, W. Zeng, J. Xing, J. Xue, and N. Zheng, 

“Semantics-guided neural networks for efficient skeleton-based 
human action recognition,” in Proc. the IEEE/CVF Conference on 
Computer Vision and Pattern Recognition, 2020, pp. 1112–1121. 

[17] S. Y. Boulahia, A. Amamra, M. R. Madi, and S. Daikh, “Early, 
intermediate and late fusion strategies for robust deep learning-
based multimodal action recognition,” Machine Vision and 
Applications, vol. 32, no. 6, pp. 1–18, 2021. 

[18] Z. Sun, Q. Ke, H. Rahmani, M. Bennamoun, G. Wang, and J. Liu, 
“Human action recognition from various data modalities: A review,” 
IEEE Transactions on Pattern Analysis and Machine Intelligence, 
2022. 

[19] M. Hassan, T. Ahmad, N. Liaqat, A. Farooq, S. A. Ali, and S. R. 
Hassan, “A review on human actions recognition using vision based 
techniques,” Journal of Image and Graphics, vol. 2, no. 1, pp. 28–
32, 2014. 

[20] L. Gorelick, M. Blank, E. Shechtman, M. Irani, and R. Basri, 
“Actions as space-time shapes,” IEEE Transactions on Pattern 
Analysis and Machine Intelligence, vol. 29, no. 12, pp. 2247–2253, 
2007. 

[21] T. Ahmad, J. Rafique, H. Muazzam, and T. Rizvi, “Using discrete 
cosine transform based features for human action recognition,” 
Journal of Image and Graphics, vol. 3, no. 2, pp. 96–101, 2015. 

[22] H. Wang and C. Schmid, “Action recognition with improved 
trajectories,” in Proc. the IEEE International Conference on 
Computer Vision, 2013, pp. 3551–3558. 

[23] N. Kumar and N. Sukavanam, “Motion trajectory for human action 
recognition using Fourier temporal features of skeleton joints,” 
Journal of Image and Graphics, vol. 6, no. 2, pp. 174–180, 2018. 

[24] I. Laptev, “On space-time interest points,” International Journal of 
Computer Vision, vol. 64, no. 2, pp. 107–123, 2005. 

[25] K. Simonyan and A. Zisserman, “Two-stream convolutional 
networks for action recognition in videos,” Advances in Neural 
Information Processing Systems, vol. 27, 2014. 

[26] J.-Y. He, X. Wu, Z.-Q. Cheng, Z. Yuan, and Y.-G. Jiang, “DB-LSTM: 
Densely-connected bi-directional LSTM for human action 
recognition,” Neurocomputing, vol. 444, pp. 319–331, 2021. 

[27] M. Kalfaoglu, S. Kalkan, and A. A. Alatan, “Late temporal 
modeling in 3d CNN architectures with BERT for action 
recognition,” in Proc. European Conference on Computer Vision, 
Springer, pp. 731–747, 2020. 

[28] S. Yucer and Y. S. Akgul, “3d human action recognition with 
Siamese-LSTM based deep metric learning,” arXiv preprint, 
arXiv:1807.02131, 2018. 

[29] Y.-F. Song, Z. Zhang, and L. Wang, “Richly activated graph 
convolutional network for action recognition with incomplete 
skeletons,” in Proc. 2019 IEEE International Conference on Image 
Processing (ICIP), IEEE, 2019, pp. 1–5. 

[30] Y.-F. Song, Z. Zhang, C. Shan, and L. Wang, “Richly activated 
graph convolutional network for robust skeleton-based action 
recognition,” IEEE Transactions on Circuits and Systems for Video 
Technology, vol. 31, no. 5, pp. 1915–1925, 2020. 

[31] M. Li, S. Chen, X. Chen, Y. Zhang, Y. Wang, and Q. Tian, “Actional-
structural graph convolutional networks for skeleton-based action 
recognition,” in Proc. the IEEE/CVF Conference on Computer 
Vision and Pattern Recognition, 2019, pp. 3595–3603. 

[32] W. Peng, X. Hong, H. Chen, and G. Zhao, “Learning graph 
convolutional network for skeleton-based human action recognition 
by neural searching,” in Proc. the AAAI Conference on Artificial 
Intelligence, 2020, vol. 34, pp. 2669–2676. 

[33] L. Shi, Y. Zhang, J. Cheng, and H. Lu, “Two-stream adaptive graph 
convolutional networks for skeleton-based action recognition,” in 
Proc. the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition, 2019, pp. 12026–12035. 

[34] Z. Liu, H. Zhang, Z. Chen, Z. Wang, and W. Ouyang, 
“Disentangling and unifying graph convolutions for skeleton-based 
action recognition,” in Proc. the IEEE/CVF Conference on 
Computer Vision and Pattern Recognition, 2020, pp. 143–152. 

[35] T. Soo Kim and A. Reiter, “Interpretable 3d human action analysis 
with temporal convolutional networks,” in Proc. the IEEE 
Conference on Computer Vision and Pattern Recognition 
Workshops, 2017, pp. 20–28. 

[36] Z. Zhang, “Microsoft Kinect sensor and its effect,” IEEE 
Multimedia, vol. 19, no. 2, pp. 4–10, 2012. 

[37] T. Zhou, H. Fu, G. Chen, Y. Zhou, D.-P. Fan, and L. Shao, 
“Specificity-preserving RGB-D saliency detection,” in Proc. the 
IEEE/CVF International Conference on Computer Vision, 2021, pp. 
4681–4691. 

[38] R. Vemulapalli, F. Arrate, and R. Chellappa, “Human action 
recognition by representing 3d skeletons as points in a lie group,” 
in Proc. the IEEE Conference on Computer Vision and Pattern 
Recognition, 2014, pp. 588–595. 

[39] Y. Du, W. Wang, and L. Wang, “Hierarchical recurrent neural 
network for skeleton based action recognition,” in Proc. the IEEE 
Conference on Computer Vision and Pattern Recognition, 2015, pp. 
1110–1118. 

[40] J. Liu, A. Shahroudy, D. Xu, and G. Wang, “SPATIO-temporal 
LSTM with trust gates for 3d human action recognition,” in Proc. 
European Conference on Computer Vision, Springer, 2016, pp. 816–
833. 

[41] S. Song, C. Lan, J. Xing, W. Zeng, and J. Liu, “An end-to-end 
spatiotemporal attention model for human action recognition from 
skeleton data,” in Proc. the AAAI Conference on Artificial 
Intelligence, vol. 31, 2017. 

[42] P. Zhang, C. Lan, J. Xing, W. Zeng, J. Xue, and N. Zheng, “View 
adaptive recurrent neural networks for high performance human 
action recognition from skeleton data,” in Proc. the IEEE 
International Conference on Computer Vision, 2017, pp. 2117–2126. 

[43] Q. Ke, M. Bennamoun, S. An, F. Sohel, and F. Boussaid, “A new 
representation of skeleton sequences for 3d action recognition,” in 
Proc. the IEEE Conference on Computer Vision and Pattern 
Recognition, 2017, pp. 3288–3297. 

[44] M. Liu, H. Liu, and C. Chen, “Enhanced skeleton visualization for 
view invariant human action recognition,” Pattern Recognition, vol. 
68, pp. 346–362, 2017. 

[45] B. Li, Y. Dai, X. Cheng, H. Chen, Y. Lin, and M. He, “Skeleton 
based action recognition using translation-scale invariant image 
mapping and multi-scale deep CNN,” in Proc. 2017 IEEE 
International Conference on Multimedia & Expo Workshops 
(ICMEW), IEEE, 2017, pp. 601–604. 

[46] A. Shahroudy, T.-T. Ng, Y. Gong, and G. Wang, “Deep multimodal 
feature analysis for action recognition in RGB+ D videos,” IEEE 
Transactions on Pattern Analysis and Machine Intelligence, vol. 40, 
no. 5, pp. 1045–1058, 2017. 

[47] H. Rahmani and M. Bennamoun, “Learning action recognition 
model from depth and skeleton videos,” in Proc. the IEEE 
International Conference on Computer Vision, 2017, pp. 5832–
5841. 

[48] M. Zolfaghari, G. L. Oliveira, N. Sedaghat, and T. Brox, “Chained 
multi-stream networks exploiting pose, motion, and appearance for 
action classification and detection (supplementary material),” in 
Proc. 2017 IEEE International Conference on Computer Vision 
(ICCV), IEEE, 2017. 

Journal of Image and Graphics, Vol. 11, No. 4, December 2023

319



[49] F. Baradel, C. Wolf, and J. Mille, “Pose-conditioned SPATIO-
temporal attention for human action recognition,” arXiv preprint,
arXiv:1703.10106, 2017.

[50] P. Wang, W. Li, J. Wan, P. Ogunbona, and X. Liu, “Cooperative 
training of deep aggregation networks for RGB-D action
recognition,” in Proc. the AAAI Conference on Artificial
Intelligence, 2018, vol. 32.

[51] L. Shi, Y. Zhang, J. Cheng, and H. Lu, “Two-stream adaptive graph
convolutional networks for skeleton-based action recognition,” in

Proc. the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition, 2019, pp. 12026–12035. 

Copyright © 2023 by the authors. This is an open access article 

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any 

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made. 

Journal of Image and Graphics, Vol. 11, No. 4, December 2023

320

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

