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Abstract—Recently, the RGB-D based Human Action 

Recognition (HAR) has gained significant research attention 

due to the provision of complimentary information by 

different data modalities. However, the current models have 

experienced still unsatisfactory results due to several 

problems including noises and view point variations 

between different actions. To sort out these problems, this 

paper proposes two new action descriptors namely Modified 

Depth Motion Map (MDMM) and Spherical Redundant 

Joint Descriptor (SRJD). MDMM eliminates the noises 

from depth maps and preserves only the action related 

information. Further SRJD ensures resilience against view 

point variations and reduces the misclassifications between 

different actions with similar view properties. Further, to 

maximize the recognition accuracy, standard deep learning 

algorithm called as Residual Neural Network (ResNet) is 

used to train the system through the features extracted from 

MDMM and SRJD. Simulation experiments prove that the 

multiple data modalities are better than single data 

modality. The proposed approach was tested on two public 

datasets namely NTURGB+D dataset and UTD-MHAD 

dataset. The testing results declare that the proposed 

approach is superior to the earlier HAR methods. On an 

average, the proposed system gained an accuracy of 

90.0442% and 92.3850% at Cross-subject and Cross-view 

validations respectively.       

 

Keywords—human action recognition, depth maps, Skeleton 

joints, view invariance, Residual Neural Network (ResNet), 

F-score 

I.  INTRODUCTION 

From the past few years, Human Action Recognition 

(HAR) has gained significant research interest in the field 

of computer vision. HAR is involved in numerous 

applications like visual surveillance [1], video 

streaming [2], Healthcare [3], gaming entertainment [4] 

and Complex objects movements’ detection [5]. 

Generally, HAR is executed by considering the RGB 

videos as input [6, 7]. However, RGB videos are 

constrained to several challenges like different 

illuminations, viewpoints, sizes, colors, shapes, clothing 

 
Manuscript received May 25, 2023; revised June 19, 2023; accepted 

July 21, 2023. 

texture and background noise.  Moreover different 

persons perform even a single action in different ways 

and in such case the RGB videos based HAR has Limited 

performance. 

To overcome these issues, recently, the HAR research 

is diverted in other direction where it considers the RGB-

D videos as input [8]. Microsoft Kinect and other 3D-

sensing devices have made it possible to record a 

person’s 3D body shape and motion, adding a new 

dimension to the data (called as RGB-D data) on human 

movement. Unlike the conventional RGB videos, RGB-D 

videos comprises of additional depth information that 

ensure efficient motion analysis. The major data 

modalities of RGB-D are two; they are depth images and 

Body postures or Skeleton Joints. Depth images are 

robust for illumination variations and ensure uniformity 

in color and provide depth information that clears the 

ambiguity in motion. Under the body postures modality, 

action is represented through joints and each joint is 

represented with three positions. Due these advantages, 

most of current researchers focused on the RGB-D data 

based HAR. However, the existing methods have 

suffered from several problems. They are listed as 

follows; 

⚫ The existing skeleton based HAR methods mostly 

concentrated on the single view, i.e., the actions used 

for training and testing is acquired from only one 

view. In such case, the same action captured in 

different views may or may not get recognized. HAR 

in such instances is called as Cross view HAR which 

is tough task. Moreover, in skeleton based methods, 

the past researchers didn’t concentrate on the 

redundancy of joints which constitutes computational 

burden on the recognition system [9]. 

⚫ Depth images are composed of different types of 

noises like small body shaking movements, jumbled 

objects, cluttered backgrounds, ghost shadows etc. 

Due to these noises, the action descriptor consists of 

fake moving pixels which consequences to less 

recognition accuracy.   

To overcome the above mentioned problems with 

individual modalities, this paper modeled a new HAR 

system that considers both Depth maps and skeleton 
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joints as inputs. Our system strengthens the weakness of 

the single data modality. In summary, the major 

contributions of this paper are outlined as follows:  

➢ To remove the fake moving pixels from depth maps, 

this work proposes a new depth action descriptor 

named as Modified DMM (MDMM) which measures 

Weighted Motion Depth (WMD) for each pixel in the 

2D depth image and discards if it found to have an 

undefined depth value.  

➢ To ensure a least redundancy, this work proposes a 

new skeleton joint descriptor called as Redundant 

Joint Descriptor (RJD) which measures the 

redundancy of each joint through entropy measure. 

Based on the entropy values, the joints which 

contribute more redundancy are removed from each 

frame of input action sequence.   

➢ To ensure the view invariance, this work proposes to 

transform the skeleton joints from Cartesian 

Coordinate System (CCS) to Spherical Coordinate 

System (SCS). SCS represent each joint with distance 

and angular deviation from other joints.     

Rest of the article is organized as follows; the details 

of literature survey are explored in Section II. The details 

of proposed HAR system through newly proposed 

descriptors are explored in Section III. Section IV 

demonstrates the details of experimental analysis and the 

Section V concludes the paper. 

II.  RELATED WORK 

Depth maps and skeleton joints have additional depth 

coordinate which provides more information about the 

motion of an action. Hence, most of current researchers 

on HAR used either depth maps or skeleton joints or both 

data modalities. Hence, we surveyed both the depth map 

based HAR methods and skeleton joints based HAR 

methods.  

A. Depth Maps  

Wu et al. [10] proposed a Dynamic Image Sequence 

(DIS) which focused on Spatio-Temporal Attention 

Points and describes the action through local Spatio-

temporal dynamics. Then they modeled Channel 

Attention (CA) model based CNNs for feature extraction 

followed by classification. Even though they employed 

deep learning for feature extraction, they didn’t ensured a 

perfect discrimination between fake and original moving 

pixels.  

Wang et al. [11] derived three compact representations 

from depth maps for action recognition; they are namely 

“Dynamic Depth Motion Normal Images (DDMNI)”, 

“Dynamic Depth Normal Images (DDNI)” and “Dynamic 

Depth Images (DDI)”. These dynamic images are 

generated from segmented sequence of depth maps 

through “Hierarchical Bi-Directional Rank Pooling 

(HBRP)”. Over the obtained representations, they applied 

ConvNets for action prediction. This method had limited 

performance for the videos captured from real time which 

composed of several artifacts like Shadows and Jumbled 

objects.  

Even though DMM can capture Spatio-temporal depth 

cues related to motion, it neglects static information. By 

including static formation, Xu et al. [12] proposed a new 

Model called as MSM which uses “Static History Image 

(SHI)” and “Motion History Image (MHI)” to describe an 

action through static and motion postures respectively.  

Besides MSM, they also proposed a “Multi-Frame Select 

Sampling (MFSS)” which captures key frames based on 

the motion energy. MSM is applied over all the three 

planes and encoded them with Local Binary Pattern 

(LBP) LBP followed by Fisher Kernels. For 

classification, they employed Kernalized Extreme 

Learning Machine (KELM) algorithm. However, MHI 

and SHI are very sensitive to noises due to fake moving 

pixels which have less interconnectivity. The motion 

region has larger pixel connectivity while the non-motion 

region has less pixel connectivity.  

Yang et al. [13] proposed a “Multi-label subspace 

Learning (MLSL)” mechanism for action recognition 

from depth maps and named it as “Depth Sequential 

Information Entropy Maps (DSIEM)”. DSIEM 

represented an action through Spatio-temporal features in 

which stitching and Entropy were employed to describe 

temporal and spatial features respectively. After 

representing the action in a single image, they computed 

HOG and passed through SVM for action prediction. 

However, entropy based motion computation could not 

ensure a better discrimination between actions with 

similar movements, for example actions like ‘draw cross’ 

and “draw tick”.  

Sanchez-Caballero et al. [14] proposed two deep 

learning architectures for HAR from raw depth videos. 

They are namely Stateless Conv_LSTM and State full 

Conv_LSTM. The later model allows the HAR system to 

accumulate the discriminative features from previous 

frames without showing impact on the memory of 

computer.   

B. Skeleton Joints  

Shao et al. [15] proposed a hierarchal model which 

simultaneously selects discriminated body parts at same 

scale and groups the bundles of body parts at different 

scales. At preprocessing, they decomposed the entire 

skeleton joints into hierarchical body parts with different 

scales. Then, a descriptor called as “Hierarchical 

Rotation and Relative Velocity (HRRV)” is proposed to 

describe the hierarchy of body parts and then the encoded 

through Fisher vectors. However, the HRV is sensitive to 

viewpoints variations.  

To handle view point variations and noisy skeleton 

joints, Nie et al. [16] proposed a view invariant 

mechanism which recovers the damaged skeleton joints 

based on 3D bio-constrained model and visualizes the 

motion features at body level at recovering process. Two 

constraints namely joint’s motion limit and fixed length 

of bones are defined under 3D bio-constrained model. 

Two motion features namely Joint Euler Angles (JEAs) 

and Euclidean Distance Matrix between Joints (JEDM) 

are derived for representing human action. Further, two 

stream deep learning models [17] are employed to train 

the system. Even though it is view invariant, it could not 
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encodes the spatial-temporal relations between Skeleton 

joints.  

Recently, Warchol and Tomasz [18] proposed a new 

Bone pair Descriptor (BPD) and five different time series 

classification models for recognizing human actions from 

skeleton joints. Under BPD, initially the bone pairs are 

subjected to compute their angular correlation and then 

they are combined with distance descriptor which 

explores the spatial relationship between skeleton joints.  

Five classifiers are employed for classification; they are 

namely (1) “LogDet Divergence Based Metric Learning 

with Triplet Constraints (LDMLT)”, (2) “Bidirectional 

Long Short-Term Memory Network (BiLSTM)”, (3) 

“Fully Convolutional Network (FCN)”, (4) “DTW with 

City Block Distance (DTW-CBD)”, and (5) “DTW with 

Euclidean Distance (DTW-ED)”. However, BPD 

introduces larger storage burden on the recognition 

system because it constructs a symmetrical matrix with 

equal dimensions.   

Nguyen et al. [19] proposed an improved version of 

Double-Feature Double-Motion Network (DD-Net) [20] 

called as Double-Feature Double-Motion Network (DD-

Net) which solves the problem of weak connections with 

global trajectories. Alongside, TD-Net is added as an 

additional branch which takes the Normalized 

Coordinates of Joints (NCJ) to highlight the spatial 

information. However, DD-Net can’t ensure resilience 

against multiple views.   

Xie et al. [21] proposed a Spatio-Temporal Mixing of 

Global and Local Self attention Graph Convolutional 

Network (STGL-GCN) for HAR from Skeleton Joints 

data. The global self-attention matrix can acquire the 

dependencies between non-physical correlations between 

joints and while the local self-attention matrix captures 

the connection strength of local edges between the joints. 

But, the GCN’s are unable to handle the long-distance 

between joints. Hence, Rahevar et al. [22] proposed a 

Spatio-Temporal Dynamic Graph Attention Network 

(ST-DGAT) which integrates the self-attention 

mechanism with graph convolutions to extract significant 

joints information. ST-DGAT also leans the Spatio-

temporal patterns of skeleton frames.    

C. Hybrid Methods  

Even through the individual modality based HAR has 

gained significant accuracy, they can’t solve the 

problems with other models. Hence, some of the recent 

researchers considered multiple data modalities for HAR. 

Kamel et al. [23] considered both body postures and 

depth maps as inputs and proposed a new CNN model 

with three channels. Further, they proposed two new 

action descriptors such as “Depth Motion Image (DMI)” 

for depth maps and “Motion Joint Descriptor (MJD)” for 

body postures. For final action prediction, they suggested 

several fusion rules. DMJ is a basic motion descriptor 

which doesn’t have any additional capabilities to label 

the non-motion regions. Due to this reason, it has less 

performance at Cross subjects validation.     

Fan et al. [24] proposed a cross attention module for 

HAR based on the integration of several self-attention 

branches. Cheng et al. [25] considered RGB and Depth 

data modalities as inputs for HAR and proposed a 

“Spatio-temporal Information Aggregation Module 

(SITAM)” model which utilizes CNNs to acquire Spatio-

temporal information. Further, they introduced a “Cross 

Modality Interactive Module (CMIM)” to aggregate the 

multi-modal complementary information. Finally, an 

integrated model called as “Multi-modal interactive 

network (MIMINet)” is proposed by fusing the SITAM 

and CMIM.   

Hafeez et al. [26] proposed a hybrid descriptor and 

Logistic Regression (LR) based HAR. Two data 

modalities namely inertial sensor and RGB silhouettes 

are considered as input. The action is described through 

various features set like Geometric, Skewness, Entropy 

and Temporal Movement. Further the features are 

optimized with Zero Order Optimization method and 

then fed to LR for classification.   

Compared to the single data modality, multiple data 

modalities ensure an increased recognition performance 

in HAR. However, there are several constraints: 1) 

inappropriate data modalities creates additional storage 

burden; 2) Pure deep learning algorithms can’t ensure the 

perfect discrimination between actions. 3) Fake moving 

pixels are not nullified. The major novelty of this work is 

of two fold: 1) In the case of depth maps, the past 

methods didn’t focus on the nullification of fake moving 

pixels. Towards such problem, this work proposed 

MDMM which monitors each pixel and discards if it 

found as a fake moving pixel; 2) Next, view invariance 

and joints redundancy is not concentrated much in earlier 

skeleton based HAR. Towards such task, this work 

proposed SRJD which ensures less storage and view 

invariant action recognition.  

III.  PROPOSED HAR FRAMEWORK 

Fig. 1 shows the overall block diagram of proposed 

HAR system which considers both depth maps and 

skeleton joints data as inputs and recognizes the action 

based on the fusion of individual output probability 

scores. For both modalities, we introduced two new 

descriptors; they are MDMM and Spherical RJD (SRJD). 

Further at training, we adapted to a standard pre-trained 

deep learning model called as a ResNet50. The major 

reason behind the consideration of ReNet50 is its faster 

training capability at each layer. The ResNet50 model 

trains the HAR system individually with two different 

action descriptors and then the obtained results are fused 

based on different fusion rules. To get the action 

prediction results, here we apply two types of fusion 

rules namely maximum fusion and product fusion. For 

each action, the softmax layer of ResNet50 produces a 

vector of N probability scores. Due to the consideration 

two models, each action gets two probability score and 

they are fed as input to fusion process.      
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Figure 1. Block diagram of proposed HAR framework. 

A.  Action Descriptor  

Under this section, we explore the details of proposed 

new action descriptors such as MDMM and SRJD. 

MDMM is derived from depth maps and SRJD is derived 

from skeleton joints.   

1) MDMM 

MDMM is an extended version of Depth Motion Map 

(DMM) introduced by Yang et al. [27]. For a given 

action video sequence, DMM is computed as an 

accumulated energy of motion information that was 

thresholded against a particular threshold. Later, Chen et 

al. [28, 29] also introduced one more version of DMM by 

aggregating the absolute difference between successive 

frames of a depth action sequence. Chen’s DMM is 

preferred over Yang’s DMM, because it has better 

capability in preserving the spatial motion information. 

Hence, we consider the same in our work. For a depth 

action sequence with N frames  𝑉(𝑥, 𝑦, 𝑡)𝑡=0,…,𝑁−1  the 

DMM is computed as: 

𝐷𝑀𝑀 = ∑ |𝑉(𝑥, 𝑦, 𝑡 + 1) − 𝑉(𝑥, 𝑦, 𝑡)|𝑁−2
𝑡=0           (1) 

DMM is more advantageous because it captures the 

shape and motion cues of an action. For an input action 

sequence, DMM computes a spatial energy distribution 

map which ensures a perfect discrimination between the 

actions. But, DMM is susceptible to the presence of some 

undefined regions incurred due to camera’s unstable 

reflection and video’s low resolution. In addition, the 

depth videos comprised of jumbled objects, Ghost 

Shadows and pixels with undefined depth values. 

Moreover, the small movement due to body shakings also 

produces some fake moving edges at the boundaries of 

subject. These edges are called as false edges which don’t 

have any significance in the provision of additional 

motion information. Hence, this work developed a 

modified version of DMM called as MDMM; the block 

diagram is shown in Fig. 2. At first, MDMM build a 

binary action video sequence 𝐷𝐵(𝑥, 𝑦, 𝑡)𝑡=0,…,𝑁−2  by 

comparing the successive frames as 

𝐷𝐵(𝑥, 𝑦, 𝑡) = {
1,   𝑖𝑓 𝑉(𝑥, 𝑦, 𝑡) ≠ 𝑉(𝑥, 𝑦, 𝑡 + 1)
0,                                   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

           (2) 

Next, to find out whether the motion at the 

corresponding pixel is significant or not, MDMM 

computes WMD (𝑤𝑚).  For this purpose, MDMM locates 

as a spatial window over every pixel and compute WMD 

as: 

𝑤𝑚(𝑥, 𝑦, 𝑡) =
1

(𝑃+1)(𝑃+1)
∑ ∑ 𝐷𝐵(𝑥, 𝑦, 𝑡)

𝑦+(
𝑃

2
)

𝑦−(
𝑃

2
)

𝑥+(
𝑃

2
)

𝑥−(
𝑃

2
)

      (3) 

where P is the size of spatial window, and 𝑤𝑚(𝑥, 𝑦, 𝑡) 

denotes WDM of a pixel located at (𝑥, 𝑦, 𝑡).  Based on 

𝑤𝑚(𝑥, 𝑦, 𝑡) ,  and a depth motion threshold 𝐷𝑇 , a 

difference map 𝐷𝑚(𝑥, 𝑦, 𝑡)  is generated between 

successive frames as: 

𝐷𝑚(𝑥, 𝑦, 𝑡) =

{
𝑉(𝑥, 𝑦, 𝑡) ≠ 𝑉(𝑥, 𝑦, 𝑡 + 1), 𝑖𝑓𝑆𝑚(𝑥, 𝑦, 𝑡) ≥ 𝐷𝑇 

0,                                   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
           (4) 

Based on our simulation experiments we found that our 

method has shown optimal performance for the values of 

P = 8 and 𝐷𝑇 = 0.6.  Finally the MDMM is constructed 

based on the accumulation of difference maps as 

𝑀𝐷𝑀𝑀 =  ∑ 𝐷𝑚(𝑥, 𝑦, 𝑡)𝑁−2
𝑡=0                     (5)  

Fig. 3 shows some examples of the DMM and MDMM. 

These figures shows a clear spatial energy distribution 

maps which has no fake moving regions and consists of 

only original motion information. 
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Figure 2. Block diagram of MDMM. 

   
(a) 

   
(b) 

   
(c) 

Figure 3. (a) Original depth frame, (b) DMM output and (c) MDMM 

output. 

2) SRJD 

SRJD aimed to describe an action with only few and 

view invariant joints. For a given action frame with N 

number of joints, only few joints has significant 

contribution towards the action representation.  Hence, 

the joints which contribute less motion information can 

be regarded as redundant joints.  Examples of such joints 

are ‘hip centre’ and ‘spine centre’ which are non-moving 

in nature.  For example consider an action called ‘High 

Arm wave’ from MSR-Action 3D dataset, only three 

joints namely ‘left hand’, ‘left wrist’ and ‘left elbow’ give 

more information about motion. Similarly, for an action 

called as ‘Forward Kick’, only the joints at left leg such 

as ‘left hip’, ‘left elbow’, ‘left ankle’ and ‘left foot’ has 

maximum motion information. The joints which have less 

contribution towards an action are called as redundant 

joints and are needs to be removed. 

Considering the above problems as a serious issue, Ofli 

et al. [30] aimed to describe an action with only 

informative joints and proposed a new descriptor called 

as “Sequence of Most Informative Joints (SMIJ)”. SMIJ 

computes the variance of each joint from its angular 

trajectories and selected only few joints those have 

maximum variance. However, they experienced limited 

recognition accuracy for the actions (like ‘High Arm 

Wave’ and ‘Draw X’) those are described with common 

informative joints. Approximately eight actions of MSR-

Action 3D dataset [31] have experienced 0% accuracy 

because they are executed with only one arm. Unlike 

SMIJ, we propose to select the informative joints based 

on the Differential Entropy [32]. The joints are selected 

which can preserve approximately 80% entropy of an 

action. Once the informative joints are chosen, then the 

redundant joints are simply kept as zero.   

Consider B be the action video having N frames, it is 

representation through N fames as 𝐵 = {𝑏1, 𝑏2, … , 𝑏𝑁} , 

where 𝑏𝑖 denotes ith frame. Consider K joints are there in 

each frame, initially; this method compute Euclidean 

distance between successive frames at same joint 

positions. Let’s assume the spatial coordinates of kth joint 

in ith and jth frames are denoted as (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗)  and 

(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) and  𝑑𝑖
𝑗
(𝑘) be the kth joint’s Euclidean distance, 

it is obtained as: 

      

𝑑𝑖
𝑗(𝑘) = √(𝑥𝑗 − 𝑥𝑖)

2
+ (𝑦𝑗 − 𝑦𝑖)

2
+ (𝑧𝑗 − 𝑧𝑖)

2
, 𝑘 ∈ 𝐾    (6) 

 

Here 𝑑𝑖
𝑗(𝑘), 𝑘 = 1,2, … , 𝐾  is used to compute the 

differential entropy (𝐻(𝑋𝑘)) of kth joint as  

 

𝐻(𝑋𝑘) = − ∑ 𝑝(𝑑𝑖𝑗
𝑘 ) log𝑏 𝑝(𝑑𝑖𝑗

𝑘 )𝑁−1
𝑖=1 ∀𝑖, 𝑗 ∈ 𝑁       (7) 

 

Eq. (7) is computed for every joint and the informative 

joints are chosen those have maximum differential 

entropy. In this manner, each action frame is represented 

with only selected joints and the redundant joints are 

simply kept as zero.  

Once the redundant joints are removed from each 

frame, then they are transformed from CCS to SCS. CCS 

makes the HAR system sensitive to view point variations, 

i.e., the system trained with actions in one view can’t 

recognize the same action under different views. Hence, 

we proposed to transform them from CCS to SCS.  

Generally, the joints of human body are restricted to 

move beyond certain distance and angel from the center 

of body (i.e., ‘hip center’). These restricted movements 

can be taken as an advantage and are used here to 

describe an action such that the HAR system becomes 

resilient to view point variations. For this purpose, we 
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considered SCS where the restricted movements of joins 

are modeled through three coordinates such as   𝑟, 𝜃 and 

𝜙. Here r measures the Euclidean distance between hip 

center and corresponding joint. Next, 𝜙 and 𝜃 measures 

the angular distances with respect to horizontal angle and 

vertical angle respectively. Let’s the joints in CCS are 

represented as 𝐽 = {𝑂, 𝐽1, 𝐽2, … , 𝐽𝑁}, in the SCS, they are 

represented as 𝐽𝑆 = ( 𝑟, 𝜃, 𝜙) [21] where  

  

𝑟 = √(𝑥𝐻𝐶 − 𝑥𝑖)
2 + (𝑦𝐻𝐶 − 𝑦𝑖)

2 + (𝑧𝐻𝐶 − 𝑧𝑖)
2    (8)  

            

𝜃 = arccos
𝑧

𝑟
                               (9) 

 

𝜙 = arctan
𝑦

𝑥
                             (10) 

 

where (𝑥𝐻𝐶 , 𝑦𝐻𝐶 , 𝑧𝐻𝐶) and (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) are the Hip Center’s 

and ith skeleton joint’s positions respectively.  

B. Classification and Fusion     

Once the action is described through MDMM and 

SRJD, then they fed to 2D ResNet50 [33] for feature 

extraction followed by action prediction. Here we 

consider 2D ResNet50 which learn high level features 

from action descriptors. The 2D ResNet50 is separately 

trained for both modalities individually after fixing the 

size of each action descriptor to 224 × 224 . Here, we 

consider ResNet50 for two channels, one for depth maps 

and another for skeleton joints. The 1st channel considers 

MDMM and 2nd channel considers SRJD as inputs. After 

classification at each channel by softmax layer, the output 

is a vector of actions probabilities. The size of each 

vector is equal to the length of number of actions trained 

to the system. Since, we employed two channels, each 

action has two probabilities and hence we applied fusion 

mechanism to determine the final action. Let’s the output 

vectors of first and second channel’s softmax layers are 

represented with 𝑅1   and 𝑅2  respectively, the fusion is 

done as follows: 

 

𝐹1 = 𝑀𝑎𝑥(𝑅1, 𝑅2 )                           (11) 

 

 𝐹2 = 𝑃𝑟𝑜𝑑𝑢𝑐𝑡(𝑅1, 𝑅2)                      (12) 

Based on the results obtained at two fusion strategies, 

the final action prediction is done as: 

 

𝐴𝑐𝑡𝑖𝑜𝑛 = 𝑀𝑎𝑥(𝐹1, 𝐹2)                      (13) 

where Action signifies the label of action that has largest 

probability score.  

IV.   EXPERIMENTAL INVESTIGATIONS 

This section explores the details of experimental 

investigations carried out on the proposed HAR 

mechanism with two standard datasets namely NTU 

RGB+D [34] and UTD-MHAD [35]. 

A. Datasets  

1) NTU RGB+D: NTURGB+D is a very large sized 

dataset, it consists larger number of action samples and 

classes with rich inter- and intra-class variations. 

NTURGB+D 60 composed of totally 56,880 depth action 

sequences and are acquired from 40 subjects. Totally, 60 

different actions are acquired with the help of three 

Microsoft Kinect V2 cameras. NTURGB+D consist of 

totally four different data modalities; they are depth maps, 

postures, Infrared videos and RGB videos. For depth 

maps and IR videos, each frame has a resolution of 

512×424 and 1920×1080 respectively. The posture data 

model is represented with different frames and each 

frame is described through 25 joints and each joint is 

represented with three positions x, y and z. Fig. 4 shows 

example actions of NTURGB+D dataset.  

 

    

(a) 

 
 

  

(b) 

Figure 4. Sample actions NTURGB+D dataset (a) Drinking Water and 

(b) Brushing Teeth. 

2) UTD-MHAD: This dataset is captured through eight 

subjects among which four subjects are male and 

remaining four subjects are female. This dataset consists 

of totally 27 actions. Each subject performed the actions 

repeatedly for four times and resulted in totally 846 

sequences. After removing three sequences, the total 

action sequences count becomes 861.    

B. Evaluation Results  

Under the evaluation, we conduct extensive 

experiments on the both datasets and the performance is 

measured through Detection rate, F-score and Accuracy. 

Mathematically, these metrics are defined as follows: 

 

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                     (14) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
                     (15) 

 

And  

 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =  
𝑇𝑃

𝑇𝑃+
1

2
(𝐹𝑃+𝐹𝑁)

                (16) 
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where TP stands for True Positive, TN, FN and FP stands 

for True Negative, False Negative and False Positive 

Respectively. For a given action, if the proposed HAR 

system recognizes correctly, then it is considered as TP 

otherwise FP or FN.  

Majorly, we conduct two types of cross validations; 

they are Cross Subject (CS) validation and Cross View 

(CV) validation. Since our one of the objective is to make 

the HAR view invariant, we conduct CV validation by 

considering different views for training and testing.  

Similarly, at CS validation, we considered different 

subjects for training and testing. A one more case study s 

performed by training the system with individual and 

combined descriptors. At individual descriptors, the HAR 

system uses MDMM and SRJD individually whereas at 

combined descriptors, the system uses both descriptors 

and the obtained results are fused.  

Fig. 5 shows the F-score for different actions of 

NTURGB+D dataset. From this figure, we observed that 

the maximum F-score is attained by combined descriptor 

for an action ‘wear jacket’ and minimum F-score is 

attained for an action ‘wipe face’. Further it was noticed 

that the action with inter class similarities experiences 

lesser F-score due to the similar movements at fingers. 

For instance, 10% of ‘drinking water’ action is 

mistakenly recognized as ‘brushing teeth’ because they 

have similar movement at fingers. A one more action pair 

for such example is ‘walk towards each other’ and ‘walk 

apart from each other’. Such kind of misclassifications is 

reduced by proposed combined action descriptor. Similar 

observations are observed based on the F-score shown in 

Fig. 6 for UTD-MHAD dataset. In UTD-MHAD dataset, 

approximately 18 actions have gained 100% F-score. 

Since UTD-MHAD has diversified actions, the proposed 

approach was succeeded in recognizing almost all actions 

accurately. On an average, the combined descriptor 

gained an F-score of 86.3320% while the individual 

descriptors such as MDMM and RJMD have gained 

83.1120% and 82.5600%, respectively. 

 

 

Figure 5. F-Score Comparison at individual and combined descriptors 

over action in NTURGB+D dataset. 

 

Figure 6. F-Score Comparison at individual and combined descriptors 

over action in UTD-MHAD dataset. 

Table I shows the results of five-fold CS validation of 

proposed method over NTURGB+D dataset. The 

maximum accuracy (92.3520%) is observed at successive 

subjects where the first 20 subjects are used for training 

and reaming 20 subjects are used for testing. Similarly, 

Table II shows the results of three-fold CS validation of 

proposed method over UTD-MHAD dataset. Since the 

number of subjects of UTD-MHAD is 8, we conduct only 

three-fold validation. At this case, the proposed method 

had shown superior performance by achieving an average 

accuracy of 93.0173%. 

TABLE I. FIVE-FOLD VALIDATION ON CROSS SUBJECTS (CS) OF NTU 

RGB+D DATASET 

CS No. Training Subjects  Testing Subjects  Accuracy (%) 

CS1 Even subjects 

(2,4,…,40) 

Odd Subjects 

(1,3,…,39)  

90.3320 

CS2 Odd Subjects 

(1,3,…,39) 

Even Subjects 

(2,4,…,40) 

89.3410 

CS3 1–20 Subjects  21–40 Subjects  92.3520 

CS4 1, 2, 3, 4, 5, 11, 12, 

13, 14, 15, 21, 22, 23, 

24, 25, 31, 32, 33, 34, 

35  

6, 7, 8, 9, 10, 16, 

17, 18, 19, 20 26, 

27, 28, 29, 30, 36, 

37, 38, 39, 40 

90.9960 

CS5 1, 4, 7, 8, 12, 13, 16, 

19, 20, 23, 24, 28, 29,  

32, 35, 36, 39, 37, 38, 

40,  

3, 5, 6, 9, 11, 15, 

17, 18, 21, 25, 27, 

30,  2, 10, 14,  22, 

26, 31, 33, 34  

87.2000 

Average  90.0442 

TABLE II. THREE-FOLD VALIDATION ON CROSS SUBJECTS OF UTD-

MHAD DATASET 

CS No. Training Subjects  Testing Subjects  Accuracy (%) 

CS1 2,4,6,8 1,3,5,7  95.4120 

CS2 1,2,3,4 5,6,7,8 93.2200 

CS3 1,4,5,8 2,3,6,7 90.4200 

Average  93.0173 

 

Tables III and IV show the accuracies of proposed 

method on NTU RGB+D and UTD-MHAD datasets 

respectively. At this case study, we can see that the 

maximum accuracy is achieved only when the system has 

trained with both descriptors. Because, the combined 

descriptor provides more knowledge to HAR system 

about the actions. Furthermore, it can also ensure a 
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perfect discrimination between actions even at finger 

movements. Such advantage is not available with 

individual descriptors; hence, they had shown limited 

accuracy. Particularly, the MDMM has shown its 

superiority at CS validation while the SRJD had shown 

its superiority at CV validation. Hence the combined 

descriptor is regarded as best descriptor which can ensure 

more accurate recognition even for similar actions. 

TABLE III. COMPARATIVE ACCURACY OF PROPOSED METHOD UNDER 

DIFFERENT COMBINATIONS ON NTU RGB+D DATASET 

Method Cross Subject Cross View 

MDMM + ResNet50 85.2350% 80.2100% 

SRJD + ResNet50 82.3300% 87.4520% 

SRJD + MDMM + 

ResNet50 
90.0442% 92.3850% 

TABLE IV. COMPARATIVE ACCURACY OF PROPOSED METHOD UNDER 

DIFFERENT COMBINATIONS ON UTD-MHAD DATASET 

Method Cross Subject Cross View 

MDMM + ResNet50 88.5230% 86.7020% 

SRJD + ResNet50 84.5620% 92.3800% 

SRJD + MDMM + 

ResNet50 
93.0173% 95.6300% 

 

Next, to analyze the impact of fusion mechanisms on 

the action recognition, we conduct a case study by 

applying different fusion rules on the output probabilities 

of individual methods. Fig. 7 shows the effect of fusion 

on recognition accuracy at different cross fold validations. 

From the results, we can see that the accuracy gained at 

fusion of scores is more than the individual results such 

as R1 and R2. Among the two fusion mechanisms, the 

maximum accuracy is observed at Product fusion, 

approximately 95.7110%. Even though the fusion takes 

additional time to derive final scores, its necessity is there 

when the multiple data modalities are used.  Further, the 

overall detection rates of proposed combined system are 

explored for all the action of NTURGB+D dataset, results 

are shown in Fig. 8. From the results, the maximum 

detection rate is obtained at the action at ‘Jump up’ action 

and minimum detection rate is observed at ‘Eat 

Meal/Snack’.    

 

Figure 7. Accuracy comparison between fusion rules at different folds 

on NTURGB+D dataset.  

 

Figure 8. Detection rates of different actions from NTURGB+D dataset  

C. Comparison and Discussion  

Table V shows the accuracy comparison between 

proposed and existing methods. This comparison is done 

between the methods those used a common dataset for 

validation, i.e., NTURGB+D. As we have mainly aimed 

at lessening the misclassification rate, the large sized 

dataset is required to validate because it contains more 

number of actions. NTURGB+D is one such dataset and 

hence most of the past methods have considered it for 

validation. The accuracy values mentioned in this table 

are all referred from the corresponding articles only.  

From the comparison, we can see that the proposed 

approach has attained maximum accuracy in both CS 

validation and CV validation. Compared with all the 

existing methods, the proposed approach achieved more 

accuracy as 90.0442% and 92.3850% at CS and CV 

validations respectively. These values declare a huge 

improvement in accuracy from the single data modality 

based HAR method like [11, 14–16, 34]. Next, the 

multiple data modality based methods such as [24, 26, 28, 

36, 37] has gained a better improvement in accuracy, 

especially they boost up the performance at CV 

validations. For instance, Deep Bilinear [22] proposed a 

view invariant descriptor based on the angular restrictions 

of human joints and hence they gained approximately 

90.70% accuracy at CV. Next, the pure deep learning 

based Action recognition methods such as Deep LSTM 

(D-LSTM) and Part aware LSTM (P-LSTM) [34] has 

achieved an accuracy of 60-70%. These methods are the 

basic methods applied by the creators of NTURGB+D 

dataset. The main reason behind less accuracy is that they 

didn’t focus on the effective action descriptor which can 

nullify the external effects like noises, undefined regions, 

shadows etc. Even though the combinational methods 

have gained an improvement in recognition accuracy, 

they had shown limited performance because most of 

them adapted only deep learning methods for feature 

extraction and classification. Directly applying deep 

learning algorithms over a noisy RGB-D data cannot 

ensure sufficient discrimination between original moving 

pixel and fake moving pixel.   
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TABLE V. COMPARISON BETWEEN PROPOSED AND EXISTING 

APPROACHES; S: SKELETON, D: DEPTH 

Method/Dataset Modality 
Accuracy (%) 

CS CV 

DDI + DDNI + DDMNI [11] D 87.1000 84.2000 

Stateless Conv-LSTM [14] D 75.2600 75.4500 

State full Conv-LSTM [14] D 80.4300 79.9100 

Deep LSTM [34] S 60.7000 67.3000 

HRRV [15] S 74.9000 82.0000 

STGL-GCN [21] S 87.1600 88.3000 

ST-DGAT [22] S 90.9000 88.9000 

Bio-Constrained [16] S 86.9000 91.8000 

P-LSTM [34] S 62.9000 70.3000 

TD-net [19] S 38.8000 47.6000 

Hybrid Descriptor with LR [26] Silhouettes + RGB 90.2300 - 

Cross Attention [24] RGB + S 84.2000 89.3000 

SC- ConvNets [36] RGB + D 86.9000 87.7000 

Deep Bilinear [28] RGB + D + S 85.4000 90.7000 

TSN [37] RGB + D 78.9000 79.9000 

Proposed D + S 90.0442 92.3850 

 

V. CONCLUSION 

This paper aims at the improvisation of HAR accuracy 

from RGB-D (Depth maps and Skeleton joints) videos. 

Towards such aim, two innovative action descriptors are 

designed namely MDMM and SRJD for depth maps and 

skeleton joints respectively. MDMM nullifies the external 

noises like background clusters, ghost shadows from 

depth maps while SRJD ensure resilience against view 

point variations. The proposed HAR system is trained 

with both descriptors through ResNet50. At classification, 

the obtained results are fused to predict the action. 

Extensive simulations are carried out over the proposed 

system through two benchmark RGB-D datasets and 

gained an improvement of 2.9442% and 4.5230% at 

NTURGB+D and UTD-MHAD datasets respectively.    

Most the current action datasets consist of simple 

actions and single actions which has common motion 

patterns. Such kind of actions can be recognized easily 

with effective action descriptors. However, there exists 

complex actions which consist of multiple and short 

actions, for example cooking and car repairing etc. 

Recognition of these kinds of actions needs very effective 

recognition system and it is suggested as one more 

possible future work.  Further, the interactions are also 

considered as complex activities which again classified 

into three classes; they are Group Activities, Human to 

Human interaction and Human to Object Interactions.  
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