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Abstract—Landmark retrieval, which aims to search for 

landmark images similar to a query photo within a massive 

image database, has received considerable attention for many 

years. Despite this, finding landmarks quickly and accurately 

still presents some unique challenges. To tackle these 

challenges, we present a deep learning model, called the 

Spatial-Pyramid Attention network (SPA). This network is 

an end-to-end convolutional network, incorporating a 

spatial-pyramid attention layer that encodes the input image, 

leveraging the spatial pyramid structure to highlight regional 

features based on their relative spatial distinctiveness. An 

image descriptor is then generated by aggregating these 

regional features. According to our experiments on 

benchmark datasets including Oxford5k, Paris6k, and 

Landmark-100, our proposed model, SPA, achieves mean 

Average Precision (mAP) accuracy of 85.3% with the Oxford 

dataset, 89.6% with the Paris dataset, and 80.4% in the 

Landmark-100 dataset, outperforming existing state-of-the-

art deep image retrieval models.1 

Keywords—deep image retrieval, convolution neural network, 

feature embedding  

I. INTRODUCTION

The process of Content-based Image Retrieval (CBIR) 

involves finding and retrieving similar images from a 

database using a given query image [1]. This topic has 

gained much attention in research communities and has 

numerous practical applications, such as visual product 

finding [2], detecting ancient symbols [3], and identifying 

individuals [4]. CBIR systems generally involve two 

phases: describing the image's content with an image 

descriptor and then evaluating the similarity among 

descriptors to retrieve relevant images for the query. 

Landmark retrieval is a specific task of CBIR [5, 6], 

which focuses on retrieval of the landmark according to a 

given query image. Despite this, the retrieval task has some 

specific challenges. Firstly, many landmarks often share 

similar appearances, such as temple building and religious 

churches. The second issue involves dramatic variations of 

landmark images. Many images are presented in a variety 

of viewpoints, scales and illuminations or background 
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clutter. Fig. 1 illustrates challenges of landmark images. 

Consequently, these problems make it more difficult than 

other CBIR tasks.  

Image Viewpoints of Tomb of Napoleon Bonaparte 

  Dramatic illuminations of All Souls College  

Figure 1. Variation in landmark images. 

To build accurate image retrieval systems, a bunch of 

previous works have focused on conventional image 

retrieval methods such as extraction of low-level features 

in region of interest (ROI) [7], bag-of-visual words 

descriptors based on SIFT [8], VLAD [9] and Fisher 

Vector (FV) [10]. Some of these work have used 

Convolutional Neural Networks (CNNs) to gain the 

retrieval performance by learning hierarchical features for 

image representations [11, 12]. 

The prevalent usage of CNN features is that they have 

strong generalization and capture semantic relatedness 

among pixels. The most straightforward CNN-based 

method relies on derived activations of convolutional or 

fully-connected layers. For instance, a certain performance 

gain in the retrieval on benchmarks is achieved by using 

features from FC6 layer in AlexNet.  Babenko [13] has 

demonstrated that max-pooled activations of AlexNet’s 

Conv5 layer generate the best image descriptor for the 

retrieval task. Recently, some of the methods have focused 

on aggregate operations of feature maps in the last 

convolutional layer to generate a compact global 
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descriptor such as NetVLAD [14], Sum Pooling [15], 

Regional Maximum Activations of Convolution (R-

MAC) [16] and Generalized Mean (GeM) [17]. Some of 

these works have focused on enhancement of deep features 

by training the CNN network using ranking losses [18], 

such as contrastive loss and triplet loss, which use the two 

or three identical CNNs sharing their weight. Nevertheless, 

the quality of learned features is still challenging in 

landmark retrieval due to the large variations of landmark 

images.   

In this paper, a novel CNN-based framework to 

landmark retrieval is present. We propose a pooling layer, 

named Spatial-Pyramid Attention (SPA) that can be 

incorporated into any CNN networks to learn a compact 

discriminative representation for the retrieval task.  

The main idea is to combine the following three 

trainable modules: spatial feature extraction, feature 

attention and feature aggregation together. First, multi-

scale pyramid pooling [19] is adopted to capture 

hierarchical regional structure of images. This region-

based method encodes feature maps in a base CNN to 

obtain regional features with different scales. After that, 

the extracted features are intensified by using attention 

mechanism to highlight their informative region. Then, the 

regional features are aggregated to produce a compact 

global descriptor. Finally, the network model is optimized 

by utilizing triplet ranking loss.   

The main contributions of this research can be 

summarized as follows: 

• We present a novel deep image retrieval 

framework that utilizes both the hierarchical 

pyramid structure of images and an attention 

mechanism to improve the descriptive power of 

image features in end-to-end manner. Our 

framework encodes images into the multi-scale 

spatial features, which are then enhanced and 

aggregated using a weighted sum strategy.   

• We introduce an adaptive weighting scheme that 

takes into account the whole content of an image 

to generate more accurate attention scores for 

feature aggregation. Our experiments demonstrate 

that the adaptive attention strategy is more 

effective than conventional feature attention 

mechanism.  

• We demonstrate that our framework can be easily 

integrated into any deep convolutional neural 

networks (i.e., ResNet50 and VGG16). We also 

evaluate our method on benchmark datasets.    

II. METHODOLOGY 

A. Network Architecture 

As shown in Fig. 2, the proposed pyramid attention 

network basically consists of a base CNN and three 

additional modules: spatial-pyramid pooling, feature 

attention and sum pooling. In this study, we use ResNet50 

architecture introduced by He [20] as the base CNN since 

it achieves state-of-the-art performance of image 

classification with the comparative number of network 

parameters. The spatial pyramid pooling is adopted to 

generate regional features from activations of the last 

convolutional layer in the base architecture. After that, the 

attention block is employed to weight each extracted 

feature based on its informative region. Finally, the 

attentive regional features are aggregated by using sum 

pooling layer to obtain a compact descriptor for image 

retrieval.  

 

 

Figure 2. Illustration of the proposed framework. 

B. Spatial Pyramid Encoding 

Convolutional neural networks typically require a fixed-

size input image (e.g., 224×224) for the fully-connected 

layer, which may limit the accuracy of image classification. 

Spatial Pyramid Pooling (SPP) was introduced as a 

solution to this issue, by adding it on the top of the last 

convolutional layer. In other words, SPP enables to 

generate fixed-length outputs from feature maps of images 

of any size. In recent studies, SPP has been shown to 

improve the generalization of models for tasks, including 

object detection and semantic segmentation. In this study, 

we leverage the pyramid pooling to aggregate multi-scale 

regions in a feature map. However, different from 

conventional pyramid pooling that applies max pooling on 

non-overlapping regions in the input map, we adopt 

overlapping max pooling that performs better in term of 

spatial invariance. Given the convolutional feature maps: 

𝑊 × 𝐻 × 𝐷, where 𝑊 × 𝐻 is the size of input map and 𝐷 

is the number of channels, the pyramid pooling has a 

pooling window size in proposition to the size of feature 

map.  
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For a given scale 𝑛  that generates the output size of 

𝑛 × 𝑛 × 𝐷 , we apply a pooling window size of [[2 ×

(
𝑊

𝑛+1
)] , [2 × (

𝐻

𝑛+1
)]] and the stride of [[

𝑊

𝑛+1
] , [

𝐻

𝑛+1
]] to enable 

pooling about 50% overlapping regions. Then, a regional 

feature set of feature map by scales is obtained as follows:  

 

     ℱ =  {𝑓𝑟
𝑠 | 𝑠 ∈ {𝑆1, 𝑆2, . . , 𝑆𝑛}, 𝑟 = {1, 2, … , 𝑁} }       (1) 

 

where 𝑓𝑟
𝑠 is the rth regional feature at scale s with a size of 

1 × 1 × 𝐷 . There are 𝑛  scales in total and 𝑁  the total 

number of regions in scale s. 

Once a regional feature set of image was obtained, we 

can embed the feature set to obtain a compact global 

descriptor: 1 × 1 × 𝐷 as follows: 

 

                                 𝐺 =  ∑ 𝑓𝑟
𝑠 𝑠                                       (2) 

 

C. Pyramid Attention  

The attention mechanism was first introduced to 

improve translation accuracy in natural language 

processing [21]. The main role of the attention is to find 

salient words in the input text that needs to get attention. It 

has also gained popularity in deep neural networks as a 

powerful addition of computer vision tasks [21–23]. 

Inspired by these successful efforts, we incorporate the 

attention unit to improve the generalization of the network. 

The main reason is the fact that all the regional features 

may not equally describe the regions of interest. Given a 

landmark image, some regional features may describe the 

background or observed objects in the environment (e.g., 

trees and cars). When the feature set is aggregated to a 

global descriptor, these regional features can negatively 

affect the system performance. In this case, the attention 

unit helps the system earning benefits by assigning 

appropriate weights to these regional features according to 

their contributions. Specifically, the attention leverages a 

1 × 1 × 𝐷 convolutional layer on the regional features to 

obtain their attention scores. The attention score 𝑎𝑘 of the 

kth regional feature 𝑓𝑟
𝑘 is computed by the two operations 

as following:  

 

    𝑎𝑘   =
exp (𝑒𝑘)

∑ exp (𝑒𝑗)𝑗
           𝑒𝑘 = 𝑞𝑇 ∗ 𝑓𝑟

𝑘                 (3) 

 

where 𝑞 denotes the 𝐷 -dimensional vector of parameters 

and ∗ denotes the inner product operation. The sigmoid 

function is also applied to scale the corresponding regional 

feature for computing the attention score. The global 

descriptor 𝐺∗ can be expressed as following: 

 

         𝐺 ′ = ∑ 𝑎𝑘𝑓𝑟
𝑘                               𝑘 (4) 

 

According to Eq. (4), the global descriptor is generated 

by the weight sum of the aggregated features. Inspired by 

Yan [22], the utilization of fixed weights for sum-

aggregation might prove ineffective due to the impact of 

image variation. Instead, we look for an adaptive 

weighting scheme that enables the model to produce more 

reasonable scores for the feature aggregation by 

incorporating a content prior from the content of an image. 

To end this, we utilize the two-level attention. The first 

level attention generates the aggregated feature 𝐺 ′  using 

the same scheme in Eqs. (3) and (4) with a 𝐷-dimensional 

vector 𝑞′  as input. The second level attention then 

computes a 𝐷 -dimensional vector 𝑞′′  by using a linear 

transformation as following:  

 

     𝑞′′ = tanh(𝑊 ∘ 𝐺 ′ + 𝑏)                           (5) 

 

where 𝑊  and 𝑏  are a transformation matrix and a bias 

vector respectively. The feature vector 𝐺 ′′ generated by 𝑞′′ 

will be the final aggregation results. The vector 𝑞′  is 

randomly initialized in the first attention block; while the 

new vector 𝑞′′ incorporates a content prior from the global 

image descriptor 𝐺 ′ . By optimizing the training process, 

the model can adaptively learn the weights and form a 

global descriptor depending on the context of image.   

D. Triplet Loss Training  

The proposed network is trained by using triplet labels, 

a special case of pairwise labels, during the training 

process [24]. These labels consist of three images: (1) an 

anchor image, 𝑥𝑎, (2) a positive image, 𝑥𝑝, that has the 

same label as 𝑥𝑎 and (3) a negative image, 𝑥𝑛, that has a 

different label from 𝑥𝑎. These images are grouped together 

to form the triple input: {𝑥𝑎, 𝑥𝑝 ,  𝑥𝑛 } for training the 

network. The network is trained using a triplet loss 

function, which ensures that the anchor image is closer to 

the positive image and farther from the negative image at 

the same time. Given a triplet input: {𝑥𝑎, 𝑥𝑝, 𝑥𝑛}, the loss 

is calculated as following:  

 

ℒ(𝑥𝑎, 𝑥𝑝, 𝑥𝑛) = max{ 0, 𝑑(𝑥𝑎, 𝑥𝑝) 𝑑(𝑥𝑎, 𝑥𝑛) 𝑚}       (6) 

 

where 𝑑  is a distance metric and 𝑚  is a margin that 

controls how far apart the positive and negative example 

should be. The goal is to minimize this loss, which will 

enable the network to produce discriminative descriptors. 

However, the task of creating triplets becomes very 

demanding in a large dataset. In this study, we utilize an 

online method to generate triplets.  

As depicted in Fig. 3, a training batch consists of a set 

of images with a fixed batch size. The triplet inputs fed into 

the network are generated by using every image in the 

batch and then get the global descriptors. Afterwards, the 

network parameters are optimized using gradient descent. 

For more in-depth explanations regarding the online 

mining of training triplets, it refers to Ref [24].  
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s  

Figure 3. Illustration of triplet loss training in our model. 

III. EXPERIMENTS 

In this section, we evaluate the performance of the 

proposed model. We will begin with introducing the 

datasets and the baseline methods. After that, we will 

demonstrate effectiveness of the proposed model. 

A. Datasets  

The proposed approach is evaluated on three different 

datasets. 

• Oxford5k Buildings Dataset: The Oxford5k [25] 

contain 5,062 images of Oxford landmarks. These 

landmark images have been manually annotated to 

generate a comprehensive ground truth for 11 

different landmarks, each represented by 5 queries. 

This gives a set of 55 queries. These 55 query 

images are also used as the training set for the 

network training. The remaining is used as the 

image dataset for retrieval.  

• Paris6k Dataset [26, 27]: This dataset consists of 

6,412 images collected from Flickr by searching 

for particular Paris landmarks with 12 different 

landmarks. For each landmark, there are 5 query 

images. This gives a set of 60 queries, which are 

also used as the training set for the network 

training. The remaining is used as the dataset for 

retrieval as the same with the oxford dataset. 

• Landmark-100 Dataset: we introduce a new 

dataset called Landmark-100, containing 20,946 

photographs of 100 historical landmarks in 

Thailand, sourced from the website of the 

Department of Fine Arts 

(https://gis.finearts.go.th/fineart/), Thailand. 

Compared with the two standard datasets for 

landmark recognition, Landmarks-100 

encompasses a broader range of landmark 

categories with greater variablity within each 

category. These characteristics make this task 

more challenging. Fig 4 demonstates the diversity 

of landmarks in this dataset.    

 

 

Figure 4. Image samples from the Landmark-100 dataset. 
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For this experiment, we consider only the annotated 

region of interest of the query images in the Oxford and 

Paris datasets, while the entire query image is employed in 

the Landmark-100 dataset. 

B. Evaluation Metrics  

For performance evaluation of the proposed model, the 

goal is to retrieve images that are the same landmark to the 

query image and to retain as many similar images as 

possible. To achieve this, two evaluation metrics are used 

in this study: precision P@N and mean Average Precision 

(mAP).  

The precision P@K measures the percentage of the 

queries that are correctly retrieved when given K potential 

positive candidates. The mean Average Precision (mAP) 

is calculated by finding the Average Precision (AP) for 

each query image and then taking the mean of these values 

as follows:       

 

 𝑀𝐴𝑃 =
1

𝑄
∑ 𝐴𝑃(𝑞)                                𝑞∈𝑄 (7) 

 

where 𝑛 denotes the number of returned images and 𝑄 is 

the number of query images. and 𝐴𝑃(𝑞)  denotes the 

average precision of a query image 𝑞, defined as follows: 

  

                      𝐴𝑃(𝑞) =
1

𝑁
∑

𝑖

𝑅𝑖
× 𝑟𝑒𝑙𝑖

𝑛
𝑖=1                      (8) 

 
where 𝑁 is the number of related images in the database 

for a specific query, 𝑅𝑖 is the rank of i-th returned image 

and 𝑟𝑒𝑙𝑖 = 1 if the image ranked in the i-th position is 

similar to the query image, otherwise it is 0.  

C. Implementation Details 

The ResNet-50 network [20] and the VGG-16 

network [28] pre-trained on ImageNet dataset are adopted 

as our base networks. We extract local features by 

cropping the last convolutional layer of each network, with 

512 feature maps for VGG-16 and 2048 for ResNet50.  To 

formulate the global descriptor from feature maps, we 

append the proposed method, named SPA, and other 

comparative methods as the aggregation layer. The 

hyperparameters of SPA are also set. We use four grid 

scales (1×1, 2×2, 4×4 and 6×6) for the pyramid pooling 

layer to encode the feature maps into region-based features, 

resulting in a total of 57 regional features. For the triplet 

loss training, we use margin m = 0.3 with a batch size of 

256 samples.  Adam ( 𝛽1 = 0.9, 𝛽2 = 0.999 ) with the 

learning rate of 0.0005 is used for all the datasets. Table I 

demonstrates performance comparisions of our approach 

for different sizes of image descriptor. 

As shown in Table I, it is obviously that after training, 

SPA with ResNet-50 architecture outperforms that of 

VGG-16 on all the datasets. Additionally, the model 

achievesthe best results in 512-D as well as 1024-D 

representations. For the reason of a compact descriptor, we 

use the SPA method that employs ResNet50 and a 512-D 

representation to compare with other aggregation methods. 

TABLE I. MEAN AVERAGE PRECISION ON ALL THE DATASETS FOR 

DIFFERENT SIZES OF IMAGE DESCRIPTORS 

Dataset 
Base 

Network 

Dimensions 

64 128 256 512 1024 

Paris6k 
VGG16 69.9 78.7 80.6 88.4 87.9 

ResNet50 75.2 81.6 81.5 85.3 86.4 

Oxford5k 
VGG16 47.4 55.3 67.4 78.7 78.3 

ResNet50 68.5 73.1 77.4 89.6 89.3 

Landmark-100 
VGG16 49.8 61.4 70.0 78.5 79.8 

ResNet50 57.4 70.7 72.6 80.4 80.3 

Note: Best results are highlighted in bold and second best results are 

underlined. 

D. Comparison with State-of-the-Arts methods 

In this section, we evaluate the proposed method with 

current CNN-based global descriptor methods for image 

retrieval on all the datasets. To ensure a fair comparison, 

all the methods are trained using the same protocol and 

followed by PCA-whitening to obtain a final 512-D 

descriptor. We first consider NetVLAD layer [14], a state-

of-the-art trainable aggregation for local feature 

descriptors into a compact global representation. This 

aggregation method computes the difference between local 

descriptors and centroids, and aggregates these differences 

into a compact global descriptor. As mentioned in 

Arandjelovic [14], the NetVLAD layer is initialized a 

vocabulary size of 64 for K-Means clustering, and the soft 

assignment parameter 𝛼  is set to 30. Sum Pooling of 

Convolutions (SPoC) introduced by Babenko [15] 

generates a global descriptor by summing convolutional 

features without feature embedding. The R-MAC 

descriptor introduced by Tolias [16] involves aggregating 

the maximum activations within a spatial grid through 

summation. Our SPA method differs from the R-MAC by 

adopting a different region choice and use attention 

mechanism to reinforce the regional features. Following 

the approach of Perronnin [10], the R-MAC grid scale is 

defined to 1×2, 2×3 and 3×4, resulting in a total of 20 

regions. Generalized-Mean Pooling (GeM) layer [17] is 

also considered as the baseline. GeM pooling layer focuses 

on generalizing max and average poolings by introducing 

a trainable parameter. Radenović [17] has suggested that 

the pooling parameter can be either manually set or can be 

learned using backpropagation.  

Lastly, our proposed method aims to be compared with 

BoW-CNN, as proposed by Mohedano [29], which 

attempts to aggregate local convolutional features using 

the Bag-of-Words model. In their work, a vocabulary size 

of 25,000 centroids is applied for all the datasets.   

IV.  RESULT AND DISCUSSION 

Table II provides a summary of the comparison results 

of all the methods across the datasets.  The results 

presented in the table clearly show the superiority of the 

proposed method (SPA) over the other methods. SPA has 

achieved mAP scores of 85.3%, 89.6%, and 80.4% on the 

Oxford5k, Paris6k and Landmark-100 datasets, 

respectively. Furthermore, SPA exhibits a consistent high-

level performance in terms of top-N precisions. This 
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highlights the effectiveness of the spatial-pyramid 

attention layer, which can be trained to learn a compact and 

robust image descriptor for enhanced landmark retrieval. 

As seen in Table II, the second best mAP performance is 

achieved by the methods that extract and aggregate 

features from regions split in the image, including Bow-

CNN and R-MAC descriptors, across all tested datasets. 

These results demonstrate the benefits of modeling spatial 

structures in image for feature embedding.     

TABLE II. COMPARISON RESULTS WITH CNN-BASED GLOBAL DESCRIPTOR METHODS ON MAP AND P@N USING RESNET50 

Method 
Oxford5k Paris6k Landmarks-100 

mAP P@1 P@5 P@10 mAP P@1 P@5 P@10 mAP P@1 P@5 P@10 

BoW-CNN 73.9 89.6 83.1 76.0 82.0 97.0 93.3 92.3 64.8 84.2 73.1 67.5 

R-MAC 66.9 83.8 74.0 68.2 83.0 95.7 93.4 91.8 77.4 85.7 75.9 71.2 

NetVLAD 71.6 87.2 79.2 69.3 79.7 94.3 93.1 90.6 75.5 81.0 70.4 62.2 

SPoC 68.1 84.3 75.0 67.4 78.2 92.9 91.7 88.6 68.4 80.6 71.4 59.3 

GeM 70.8 83.3 72.7 66.3 79.7 94.8 92.2 90.2 72.2 84.1 70.2 67.1 

SPA* 85.3 90.2 84.3 80.3 89.6 96.7 93.6 92.4 80.4 87.6 79.7 73.3 

Note: Best results are highlighted in bold and second best results are underlined. 
 

 

 

Figure 5. The performance (mAP) comparison for the impact of 

adaptive attention (%). 

We also compare our proposed method with non-region 

based aggregation methods (i.e., NetVLAD, SPoC and 

GeM). Among such methods, NetVLAD, the state-of-the-

art CNN-based method for image retreival, performs the 

best mAP performance with the highest mAP score of 

79.7% on the Paris benchmark. It achieves this result using 

VLAD features. However, NetVLAD often requires a 

dense high-dimensional representation to achieve good 

results, making it computationally expensive to scale up to 

large datasets. Compared with NetVLAD, SPA 

representation is highly sparse, allowing for fast retrieval. 

Moreover, our proposed method achieves better results in 

terms of mAP and top-N precisions. The interpretation is 

that the attention block enhances the local CNN features 

whose regions of interest are described. Meanwhile it 

suppresses the confusing regional features captured by 

pyramid pooling.  

Fig. 5 demonstrates the effect of the attention 

mechanism in our proposed method. We compare the mAP 

scores of SPA with no-attention, single attention and the 

two-level attention mentioned in Section II.C. The results 

shown in Fig. 5 demonstrate that the SPA without attention 

mechanism performs the worst across the datasets, while 

the highest mAP results in adopting the two-level attention. 

These results support the effectiveness of the two-level 

attention block that incorporates a content prior to refine 

regional features of image, leading to a more accurate 

global descriptor. Figs. 6–8 show the top-7 retrieval results 

of our proposed approach for the Landmark, Oxford and 

Paris datasets, where the query images (the left-hand side 

images) corresponds to the return images of the model’s 

retrieval results. If the returned image belongs to the same 

landmark as the query image, it is enclosed in a green box; 

otherwise, it’s in a red box.  

 

 

Figure 6. Top seven retrieval results for the Landmarks-100 dataset. (top row) religious structure  (middle row) old steel bridge and (bottom row) old 

fort. 
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Figure 7. Top seven retrieval results for the Oxford5k dataset. 

 

Figure 8. Top seven retrieval results for the Paris6k. 

V. CONCLUSION 

In this paper, a novel deep image retrieval framework, 

named Spatial Pyramid-Attention (SPA), has been 

proposed. SPA is a well-designed layer that extracts the 

image pyramid structure and then generate a compact and 

discriminative global descriptor for visual landmark search. 

SPA takes advantages of encoding images into the multi-

scale regional features and aggregating them using an 

adaptive attention strategy. In order to enhance the global 

descriptor, the network is trained using online triplet 

mining and triplet loss. The experimental results have 

demonstrated the effectiveness of the proposed framework, 

compared with existing deep image retrieval models on 

widely used benchmark datasets.  

Our future work will consider to further improve the 

proposed framework in the following directions. First, 

given that we have landmark labels variable, we will work 

to improve the network capacity to achieve more accurate 

image retrieval by jointly training both triplet loss and 

classification loss. Second, we plan to integrate a query 

expansion strategy into the proposed approach to further 

improve retrieval performance.    
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