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Abstract—Eye blinking detection in the wild plays an 

essential role in deception detection, driving fatigue detection, 

etc. Despite the fact that numerous attempts have already 

been made, the majority of them have encountered 

difficulties, such as the derived eye images having different 

resolutions as the distance between the face and the camera 

changes; or the requirement of a lightweight detection model 

to obtain a short inference time in order to perform in real-

time. In this research, two problems are addressed: how the 

eye blinking detection model can learn efficiently from 

different resolutions of eye pictures in diverse conditions; and 

how to reduce the size of the detection model for faster 

inference time. We propose to utilize upsampling and 

downsampling the input eye images to the same resolution as 

one potential solution for the first problem, then find out 

which interpolation method can result in the highest 

performance of the detection model. For the second problem, 

although a recent spatiotemporal convolutional neural 

network used for eye blinking detection has a strong capacity 

to extract both spatial and temporal characteristics, it 

remains having a high number of network parameters, 

leading to high inference time. Therefore, using Depth-wise 

Separable Convolution rather than conventional convolution 

layers inside each branch is considered in this paper as a 

feasible solution.  

Keywords—eye blinking, interpolation, facial landmarks, 

depth-wise separable convolution, 3D spatiotemporal 

Convolutional Neural Network (CNN), pyramid bottleneck 

block network 

I. INTRODUCTION

One of the critical signals that might reveal several 

aspects of human health and expression is the blinking of 

the eyes. And thus, a series of eye blinking patterns can be 

retrieved and used in several applications, including 

detecting driver drowsiness [1], face anti-spoofing [2], and 

communication between persons with disabilities [3], etc. 

In the driving or biometric-based surveillance scenarios, 

one important advantage of this approach is to receive 

cropped eye images of a person as inputs, and thus 
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authority personnels only need to collect eye images data 

of different people, but not their full body, raising no 

concern in privacy or bias issues. In the education scenario, 

this method is encouraged to be used in online learning, in 

which the webcam can capture and analyze eye blinking 

patterns to detect the student’s cognitive ability or mind 

wandering problems.  

There has been a growing number of research in recent 

years to propose methods for eye blinking detection, 

ranging from the use of traditional signal processing, 

image processing, to deep learning. However, the majority 

of them don’t take into account eye blinking in the wild. 

Most currently available eye-blink detection datasets along 

with the proposed methods carried out on those datasets 

are typically taken in confined indoor settings with 

partially inactive subjects. Nevertheless, eye-blink 

detection in the wild is more favored in some real-world 

application circumstances. For instance, eye-blink visual 

data may be covertly gathered using concealed cameras 

during the deception detection phase, in either unrestricted 

interior or outdoor situations. In this instance, performance 

must fundamentally be ensured via an efficient and real-

time eyeblink detection technique in the field.  

Additionally, when predicting eye blinks, there remain 

two issues. The first problem is that, depending on the 

situation, the distance between the face and the camera 

varies; and thus, the derived eye pictures may have 

different resolutions. As a result, a detection model may 

face a hurdle when trying to learn at various resolutions for 

the purpose of blinking detection. The second problem is 

that the detection model requires very low inference time 

in order to attain real-time performance. The inference 

time is how long it takes for a forward propagation from a 

given input sequence of eye images to a decision of 

blinking or non-blinking. Therefore, a lightweight 

detection model with a low number of parameters is 

needed for faster inference time.  

Going further into the first issue, when detecting eye 

blinking in the wild, the distance between the subject’s 

face and the camera may differ depending on, for example, 
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the subject’s standing position during face verification or 

recognition. As a result, the eye images may have low or 

high resolution and they must be resized into a constant 

size for the input of a deep learning -based detection model. 

When eye pictures are extracted in distant environment 

situations such as CCTV or house front-door cameras, the 

extracted eye images typically have poor quality and 

require upsampling to gain additional features for the 

model to learn. In contrast, when eyes are captured at close 

range (i.e., when looking at a computer screen, performing 

eye biometric verification, in-car camera monitoring 

driver etc.) much higher resolutions are obtained. However, 

when increasing the batch size during training to improve 

performance of deep learning -based detection models, 

high resolution images occupy a large amount of memory. 

And thus, sometimes researchers are forced to limit the 

batch size due to memory restrictions of hardware. One 

possible solution is downsampling of higher resolution 

images to train with larger batch size while having limited 

memory [4]. One question could be how upsampling and 

downsampling methods may affect the performance of 

classification models by modifying input features. 

Therefore, in this paper, we first analyze the effects of 

upsampling and downsampling interpolation techniques 

on the detection of eye blinking. 

Going further into the second issue, real-time detection 

applications relating to images often rely on Convolutional 

Neural Network (CNN) -based models for its excellence in 

feature extraction [5], and researchers often look for a 

deeper, or more complex model architecture to gain 

improvement in its detection performance. This usually 

trades off with higher computation complexity by having 

a large number of network parameters, resulting in high 

inference time for new data and limiting real-time 

performance. Regarding eye blinking detection using 

CNN-based approach, a spatial-temporal CNN with a 

pyramidal bottleneck network [6] has recently 

demonstrated superiority over existing methods. However, 

their highest performance model of three pyramids with 

three branches (P3B3) remains having a high number of 

parameters (~ 7.6 million parameters), despite having great 

ability to extract both spatial and temporal features due to 

having more pyramids (deeper) and more branches (larger). 

Hence, it is imperative to decrease the number of network 

parameters while increasing model complexity. To this 

end, in this paper, we proposed to employ Depth-wise 

Separable Convolution layers, instead of traditional 

convolution layers inside each branch. 

The remaining sections of the paper are organized as 

follows: Section II presents related studies about the 

evaluation of image resolution on deep learning 

performance and eye blinking detection methods. Section 

III describes the workflow of the eye blinking detection 

model, then focuses on the preprocessing step, and 

introduces a proposal for eye blinking detection step. 

Section IV presents the experiments and the obtained 

results. Section V discusses the obtained results. Finally, 

Section VI draws some conclusions and points towards 

future works. 

II. LITERATURE REVIEW 

This section briefly reviews recent studies relating to 1) 

evaluation of interpolation methods and image resolutions 

on detection performance of a classification model, and 2) 

eye blinking detection methods from eye state estimations 

to deep learning based predictions and an in-the-wild eye 

blinking dataset. 

Regarding analyzing the effects of interpolation and 

image sizes on the classification model, Bekhouche and 

Kajo et al. [6] employed picture downsampling to test the 

impact of five different pixel interpolation techniques 

(nearest neighbor, bilinear, Hamming window, bicubic, 

and Lanczos interpolation) on the prediction accuracy of a 

CNN for the aim of diagnosing on medical images. The 

five-pixel interpolation algorithms were obtained from 

Python Pillow’s image-processing module to interpolate 

the image data for CNN. It was shown that selecting 

hamming or bicubic for downsampling may offer more 

accuracy when compared to other interpolation algorithms. 

However, the paper’s explanation of how they outperform 

the other interpolation methods in the context of medical 

images is unclear.  

In terms of analyzing suitable image resolutions, 

Sabottke and Spieler et al. [7] tracked CNN performance 

as a function of picture resolution for applications in 

diagnostic radiology on a dataset of chest radiographs from 

the National Institutes of Health. The performance of CNN 

was evaluated using the Area Under the receiver operating 

characteristic Curve (AUC) and label accuracy. For binary 

decision networks, maximum AUCs were obtained at 

picture resolutions between 256256 and 448448 pixels. 

Additionally, the biggest fractional increase in AUC was 

found to be obtained at higher picture resolutions 

(320320 pixel) when compared with lower resolution 

(6464 pixel) inputs. 

Regarding the classifier for eye blinking detection, there 

has been extensive research on techniques ranging from 

using features tracker for eye state estimation, to 

implementing different deep learning architectures for a 

single or multiple eye image with an attempt to extract 

temporal features. Using a flock of KLT trackers, 

Drutarovsky and Fogelton et al. [8] introduced a motion-

based eye blink detection system that tracks the initial 

ocular areas throughout time in order to increase the 

precision of the state estimation findings. On the Talking 

face dataset [9], the approach produced the best results 

across all metrics because it consists of 5000 frames taken 

from a video of a person engaged in conversation and this 

corresponds to about 200 seconds of recording. However, 

the ZJU dataset [10] yielded lower Recall because the 

Talking face contains a single European person, whereas 

the ZJU dataset contains Asian people whose eyebrows are 

mostly on average further from the eye. One-third of the 

method’s failure to identify 71 eye blinkings on the ZJU 

was attributed to the Viola-Jones type algorithm’s error. 

Because the video starts with a person with closed eyes, 

about 20 blinks are incomplete. Other failures generally 

happen as a result of extremely quick eye blinking that 

prevents the state machine from registering it.  
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Later investigations showed that the vast majority of 

currently used databases and algorithms in the field of eye 

blink detection are restricted to trials using a few hundred 

samples, as well as solitary sensors like face cameras. Daza 

and Morales et al. [11] proposed a novel multimodal 

database mEBAL with the support of sensors for eye blink 

detection and attention level estimation. They utilized 

three different sensors, an Electroencephalography (EEG) 

band to capture user cognitive activity and blinking events, 

a Near Infrared (NIR) and RGB cameras to record face 

expressions. The obtained outcomes have demonstrated 

the viability of using mEBL to train precise eye blink 

detectors under realistics acquisition settings. Nevertheless, 

their proposed VGG16-based model for eye blinking 

detection takes single images as input, and thus temporal 

features might not be captured. Additionally, the mEBL 

database was captured under a controlled environment, 

and thus their detection model might not generalize well in 

different scenarios.  

To tackle the generalizability of a detection model, Hu 

et al. [12] proposed a novel dataset of eye blinking 

detection in the wild, HUST-LEBW [12], then suggested 

a modified LSTM architecture that can capture the 

multiscale temporal information of an eyeblink. The 

extraction of eye blinking features based on uniform LBP 

was then utilized. It simultaneously records both motion 

and appearance data. The comparison of the LSTM based 

model on HUST-LEBW [12] against state-of-the-art 

techniques showed how effective it was at detecting eye 

blinks in the wild and how real-time it could operate. 

Most recently, to determine whether or not there is a 

blink or multiple blinks exist in a particular image 

sequence, Kajo et al. [6] proposed different supervised and 

unsupervised learning approaches to provide an effective 

and robust eye blinking detection framework, a using an 

end-to-end 2D and 3D lightweight CNNs called Pyramidal 

Bottleneck Block Networks (PBBN). To detect numerous 

eye blinks, the authors recommended combining moving 

windowed-Singular Value Decomposition (SVD) with 2D 

PBBN. In this study, 3D PBBN was primarily employed 

to identify a single blink in a picture sequence. However, 

the authors interpolated input images to the same size 

9696 with no further explanation in the preprocessing 

step, and their best performing model with three pyramids 

and three branches (P3B3) remained having a high number 

of parameters, leading to higher inference time on new 

sequences.  

Therefore, in this paper, further evaluation of different 

interpolation methods to a target image resolution is 

provided, and the number of model parameters is 

continued to be reduced in attempt to achieve real time 

performance, while remaining having sufficient feature 

extraction ability. 

III. PREPROCESSING OF EYE IMAGES AND DEPTH-

WISE SEPARABLE CONVOLUTION FOR A 3D SPATIO-

TEMPORAL CNN  

In this section, a lightweight Depth-wise Separable 

Convolution Module for 3D spatiotemporal CNN with 

Pyramid Bottleneck Block Network (DWS-3D-PBBN) is 

proposed to determine eye blinking within an image 

sequence of eye states. The model is built on top of the 

recent 3D Pyramidal convolution neural network (3D-

PBBN) [6] to further shrink the model parameters and 

reduce inference time for real-time application. Firstly, a 

general pipeline for eye blinking detection is illustrated in 

Fig. 1. Then, the paper primarily focuses on the step of 

preprocessing to address the issue of extracted eye images 

with multi resolutions, and the step of eye blinking 

detection model to present architecture of the proposed 

DWS-3D-PBBN, compared to the baseline model 3D-

PBBN. 

 

Figure 1. Flow-chart of eye blinking detection. 

A. Workflow of Eye Blinking Detection 

Upon receiving a new image in real-time scenario, the 

workflow for eye blinking detection approach begins with 

face detection and eye extraction, similar to the workflow 

proposed in [6]. Here, the Single Shot Detector (SSD) [13] 

framework based on a ResNet model can be used to detect 

the face in an image. Once the face is detected, facial 

landmarks are detected using the fast Kazemi 

algorithm [14] to identify 68 facial coordinates 

surrounding certain parts of the face such as the nose, 

mouth, and eyes. Next, the right and left eye images are 

extracted by cropping from the landmark points (37 to 42) 

and (43 to 48) respectively, with a padding of 25% from 

all directions. The extracted eye images of an incoming 

frame are then preprocessed and used as input for the eye 

blinking detection model.  

B. Preprocessing of Eye Images 

This section dives further into the evaluation of 

preprocessing methods relating to image resolutions, and 

derives optimal ones for suitable tasks, which hasn’t been 

mentioned in previous work. Since the eye images are 

extracted from scenes under different scenarios, i.e, 

varying distances from the eyes to camera, the resulting 
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cropped eye images have different resolutions. The 

preprocessing step ensures that the eye images are of 

consistent size and format, making them ready to be fed 

into the detection model. This step involves upsampling or 

downsampling the image to a target size. For a new image 

to be processed, if its size is smaller than a target size, the 

upsampling method is utilized to generate more features 

for the image, otherwise, downsampling is applied instead, 

to keep the input size persistent for the model, without 

significant loss in features. This can be realized by 

choosing a suitable target size. In our experiment, the mean 

size of all cropped eye images from the training dataset is 

selected as the suitable target size, in order to avoid over-

upsampling or over-downsampling, resulting in inaccurate 

features or missing important features. Five interpolation 

methods (NN, BL, Area, BC, Lanczos) are evaluated in 

this paper to select the suitable one for upsampling and 

downsampling to the target size. The resized image is then 

normalized to facilitate training of the detection model. 

C. Eye Blinking Detection Model 

1) Baseline model: 3D spatiotemporal CNN with 

Pyramid Bottleneck Block Network (3D-PBBN) 

Inspired by the success of bottleneck residual block [6], 

authors of the baseline model [6] proposed a simple 

Pyramid Bottleneck (PB) block that can be utilized for 

both 2D and 3D inputs. The main motivation of a PB block 

is to learn multi-resolution features from an input, while 

reducing the total number of blocks in a network 

architecture, leading to fewer network parameters. A small 

number of parameters is essential for achieving real-time 

performance by shortening the inference time, and to adapt 

the model’s size to the size of the training set, as the eye 

blink dataset is not substantial enough to train a model with 

a high number of parameters. 

For eye blinking detection from a sequence of frames, 

the input data is interpreted as a 3D tensor, with two spatial 

dimensions and one temporal dimension, and the 3D PB 

block is used to learn the spatiotemporal features. An 

overview of a 3D PBBN is given in Fig. 2. The model is 

composed of a starting block of conventional 3D CNN 

with depth information, multiple 3D PB blocks, and an 

output block with global average pooling connected with 

a fully connected layer with two outputs followed by a 

softmax layer.  

 

Figure 2. General architecture of a 3D PBBN. 

The starting block contains 3D convolutional layer that 

filters a 𝐷𝐹 × 𝐷𝐹 × 𝐷𝑇 × 3 input sequence with K kernels 

of size 333 and stride 112 to downsample the 

temporal dimension, where 𝐷𝐹 is image height/width, and 

𝐷𝑇  is the number of frames. The convolutional layer is 

followed by a batch normalization layer, ReLU layer and 

a 333 max pooling layer with stride 112 that 

continues to downsample by half the temporal dimension, 

while retaining spatial and channel dimensions. 

Then, the starting block is followed by multiple 3D PB 

blocks downsampling the spatial dimensions to half and 

doubling channel dimension after each PB block. Every 

3D PB block shaped like a pyramid contains several 

branches, within which consists of multiple layers, and the 

number of layers corresponds to the current branch number. 

Assume the current branch is 𝑙𝑡ℎ , it starts with a 

convolution layer with filter size of (2𝑙 − 1) × (2𝑙 − 1), 

and keeps reducing by halves in the next convolutional 

layer within the same branch. An example of a 3D PB 

block with three branches is illustrated in Fig. 3. 

 

Figure 3. Example of a 3D PB block with 3 branches. 

It can be seen from Table I that the number of 

parameters increases rapidly along with the total number 

of branches. However, the more branches the PB block 

contains, the more resolutions of features can be learned 

through multi-resolution convolution layers at the start of 

each branch, and thus it is expected to outperform PB 

blocks with fewer branches in the feature extraction ability. 

Therefore, it is essential to reduce the number of network 

parameters while increasing the number of branches 

without significant loss of feature extraction ability, and 

one potential approach can be the use of depth-wise 

separable convolution replacing conventional convolution 

layers within each branch. 

TABLE I. NUMBER OF PARAMETERS FOR INCREASING NUMBER OF 

BRANCHES IN TWO-PYRAMID AND THREE-PYRAMID NETWORK 

Network Parameters 

3D P2B2 437442 

3D P2B3 1975170 

3D P2B4 5934210 

3D P3B2 1619650 

3D P3B3 7583362 

3D P3B4 23243650 

 

2) Proposed model: utilizing depth-wise separable 

convolution 

a) Depth-wise separable convolution 

This section briefly introduces how standard 

convolution can be factorized into depth-wise convolution 

and point-wise 1 × 1 convolution. A given input feature F 

with shape DF × DF × C  goes through a standard 

convolution with kernel K of shape DK × DK × C × C′  , 
resulting in an output feature map F' shaped DF′ × DF′ × C′, 
where 𝐷𝐹 is spatial dimension, 𝐷𝐾 is spatial size of kernel, 

C and C' are the number of input, output channels 

respectively. The standard convolution (one filter for all 
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input channels) is illustrated in Fig. 4, and can be 

formalized as F′ =  F ∗  K. 

 
(a)  

 
(b) 

Figure 4. Standard convolution layer. (a) 1 filter with C channels, 

convolves with C input channels, resulting in 1 output channel. (b) C' 

filters with C channels, convolves with C input channels, resulting in C' 

output channels. 

In order to drastically reduce the model parameters and 

computations in standard convolution, depth-wise 

separable convolution splits the original operation into 

filter operation-depth-wise convolution (one filter for one 

input channel), and combination operation-point-wise 11 

convolution (linear combination of the output depth-wise 

layer). The filter operation is shown in Fig. 5(a), and can 

be formalized as F̂  =  F ×  Kdw  , in which Kdw  has the 

shape of DK × DK × C, resulting in F̂ shaped DF′ × DF′ ×
C′. It should be noted that F and F̂ share the same number 

of channels. The combination operation is shown in Fig. 

5(b), and can be formalized as  F′ =  F̂  ×  Kdw, in which 

Kpw has the shape of 1 × 1 ×  C × C′ , resulting in F′ 
shaped DF′ × DF′ × C′. 

The number of parameters to be optimized in standard 

convolution is DK × DK × C × C′. In contrast, depth-wise 

separable convolution optimizes parameters of lower 

number DK × DK × C +  C × C′, leading to a saving ratio 

of 
DK×DK×C+C×C′

DK×DK×C×C′
=

1

C′
+

1

DK
2 . The number of output 

channels C' and kernel size DK are generally large in real 

world scenarios ( C′ >>  1 , DK
2 >>  1 ) [15], and thus 

depth-wise separable convolution can substantially shrink 

the number of parameters and computations, which is 

suitable for real-time application.  

 

 

(a) 

 
(b) 

Figure 5. Depth-wise separable convolution. (a) C filters with q1 channel, 

convolves with C input channels (depth-wise), resulting in C output 

channels. (b) C' 11 filter with C channels, convolves with C previous 

output channels (point-wise), resulting in C' output channels. 

b) Depth-wise separable convolution module for 

3D-PBBN 

To improve existing 3D-PBBN, we extended the 

implementation of depth-wise separable convolution from 

2D to 3D convolution layer. While each input channel of 

2D convolution contains only two spatial dimensions, the 

3D convolution also contains an additional depth 

dimension. When using depth-wise separable convolution, 

2D depth-wise operation applies to two spatial dimensions 

per input channel, whereas 3D depth-wise operation 

applies to two spatial dimensions and one depth dimension 

per input channel. For 3D PBBN, 3D depth-wise separable 

convolution replaces each 3D convolution layer per branch 

in each PB block. An example of 3D depth-wise separable 

Pyramid Bottleneck Block Network with 2 PB block and 

2 branches per block (DWS-3D-P2B2) is shown in 

Table III, replacing the original 3D-P2B2 network in 

Table II. 

TABLE II. ARCHITECTURE OF 3D PBBN THAT CONTAINS TWO 

PYRAMIDS WITH TWO BRANCHES (3D-P2B2) 

Block Layer Filters shape 
Stride 

Size 
Output 

Input 

3DConv 333364 112 9696764 

BN - - 9696764 

ReLU - - 9696764 

MaxPool 333 112 9696764 

P1-B1 
3DConv 1136464 221 4848464 

BN - - 4848464 

P1-B2 

3DConv 3336464 111 9696464 

BN - - 9696464 

ReLU - - 9696464 

3DConv 1136464 221 4848464 

BN - - 4848464 

Add 
ADD - - 4848464 

ReLU - - 4848464 

P2-B1 
3DConv 11364128 221 24244128 

BN - - 24244128 

P2-B2 

3DConv 33364128 111 48484128 

BN - - 48484128 

ReLU - - 48484128 

3DConv 113128128 221 24244128 

BN - - 24244128 

Add 
ADD - - 24244128 

ReLU - - 24244128 

Output 
AvgPool 24244 - 111128 

FC 1128 - 2 
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TABLE III. ARCHITECTURE OF DEPTH-WISE SEPARABLE 3D PBBN 

THAT CONTAINS 2 PYRAMIDS WITH 2 BRANCHES (DWS-3D-P2B2) 

Block Layer Filters shape Stride Size Output 

Input 

3DConv 333364 112 9696764 

BN - - 9696764 

ReLU - - 9696764 

MaxPool 333 112 9696764 

P1-B1 
3DConv 1136464 221 4848464 

BN - - 4848464 

P1-B2 

3DConv 3336464 111 9696764 

BN - - 9696764 

ReLU - - 9696764 

3DConv 1136464 221 4848464 

BN - - 4848464 

Add 
ADD - - 4848464 

ReLU - - 4848464 

Output 
AvgPool 48484 - 11164 

FC 164 - 2 

 

IV. EXPERIMENTS AND RESULTS 

A. Dataset 

In order to evaluate eye blinking detection in the wild, 

the dataset should be chosen to tackle challenges in 

uncontrolled conditions, and illumination changes 

sensitivity. Therefore, the dataset HUST-LEBW [12] is 

selected in this work, which originated from 20 movies and 

series. Each video has a resolution of 1456600 or 

1200720, depicting characters under different poses, 

viewpoint positions and lightning conditions. The videos 

were split into multiple sequences labeled either as eye 

blinking or non- eye blinking scenes. Each sequence 

contains both 10-frame and 13-frame versions, and the 

models in this paper were trained on sequences of 13 

frames. Table IV describes the distribution of labels for left 

and right eye images in both training and testing sets. 

TABLE IV. LABEL DISTRIBUTION PER EYE IN HUST-LEBW [12] 

DATASET  

Eye Blinking Train Test 

Right 
Yes 256 126 

No 190 98 

Left 
Yes 243 122 

No 181 98 

 

B. Interpolation Effects on Eye Blinking Detection 

Model When Upsampling and Downsampling 

Fig. 6 describes the distribution of training image sizes 

from the dataset HUST-LEBW [12]. Even though the 

majority of images have size around 5050, the 

experiments selected the mean size 9696 as the target size 

for interpolation. This can avoid over-upsampling or over-

downsampling, which might lead to low performance in 

new dataset, due to inaccurate features or missing 

important features. And thus, images with size smaller 

than 9696 are upsampled using five interpolation 

methods Nearest Neighbor (NN), Bilinear (BL), Area, 

Bicubic (BC), Lanczos4, and the ones larger than 9696 

are downsampled instead. 

 

 

Figure 6. Distribution of image sizes (horizontal axis) over number of 

images (vertical axis) in the training set of HUST-LEBW [12]. 

The evaluation metric of each method after training with 

the proposed model DWS-3D-PBBN 2 pyramids and 2 

branches (DWS-3D-P2B2) is done using Precision, Recall, 

F1-score, which are computed as follows: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝐹1  =  
2

1
𝑟𝑒𝑐𝑎𝑙𝑙

+
1

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

 

in which TP, TN, FP, FN represent the number of True 

Positives, True Negatives, False Positives, and False 

Negatives respectively.  

The training runs through a combination of Early 

Stopping and k-fold cross validations with k = 15. The 

testing sets are extracted according to the type of 

interpolation, i.e, during evaluation of upsampling, the 

testing set contains only images smaller than 9696 from 

the original testing set. Table V shows the average 

performance of interpolation methods on a corresponding 

testing set of only the left eye, with standard deviation after 

15 folds. It can be seen that BC obtained both the highest 

Recall 69.71% and F1-score 71.29% for the purpose of 

upsampling, whereas BL outperformed others in both 

Precision 76.77% and F1-score 77.06%. Therefore, BC 

and BL were selected as preprocessing methods for further 

evaluation of both original 3D-PBBN and the proposed 

DWS-3D-PBBN. 
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TABLE V. AVERAGE PERFORMANCE OF EACH INTERPOLATION METHOD FOR UPSAMPLING AND DOWNSAMPLING AFTER 15-FOLD CROSS-

VALIDATION  

 Method Precision Recall F1 

Upsampling 

NN 0.7559 ± 0.0505 0.6717 ± 0.0971 0.7068 ± 0.0594 

BL 0.7284 ± 0.0670 0.6737 ± 0.1467 0.6933 ± 0.1036 

Area 0.7272 ± 0.0672 0.6895 ± 0.0819 0.7045 ± 0.0558 

BC 0.7382 ± 0.0524 0.6971 ± 0.1113 0.7129 ± 0.0769 

Lanczos4 0.7191 ± 0.0471 0.6819 ± 0.1474 0.6900 ± 0.0949 

Downsampling 

NN 0.6548 ± 0.1241 0.8593 ± 0.1755 0.7339 ± 0.1224 

BL 0.7677 ± 0.1724 0.8222 ± 0.1560 0.7706 ± 0.0828 

Area 0.6349 ± 0.0594 0.8741 ± 0.1384 0.7281 ± 0.0599 

BC 0.6926 ± 0.1476 0.8370 ± 0.1319 0.7458 ± 0.0934 

Lanczos4 0.6669 ± 0.1219 0.8518 ± 0.1434 0.7374 ± 0.0856 

 

C. 3D Pyramid Bottleneck Block Network with Depth-

Wise Separable Convolution 

1) Evaluation of different variants of 3D pyramid 

bottleneck block network 

Table VI provides a comparison between a deeper 

(more pyramids) and wider (more branches) of each the 

original 3D-PBBN and the proposed depth-wise separable 

convolution approach DWS-3D-PBBN, on left and right 

eye sequences of HUST-LEBW [12] dataset. Specifically, 

for each approach, the simple network was implemented 

with two pyramids and two branches per pyramid, and the 

complex network was implemented with three pyramids 

and three branches per pyramid. The experiments were run 

with 15-fold cross validations, and early stopping with 

patience of 50 epochs. 

Regarding the feature extraction ability for each 

approach, it can be seen that P3B3 outperforms P2B2 over 

2.94% and 1.18%, and DWS-P3B3 outperforms DWS-

P2B2 over 0.07% and 0.35% in F1-score for left and right 

eye images respectively. 

Regarding the model size in parameters, it can be seen 

that the number of parameters of the proposed DWS-P2B2 

and DWS-P3B3 are only 13.3% and 6% compared to P2B2 

and P3B3 correspondingly. A significant reduction in 

model size traded off with only 1.63% and 0.3% reduction 

in Precision performance of DWS-P3B3 compared to 

P3B3 of each eye. Nevertheless, the Recall scores 

maintained to increase by 0.82% and 2.01% respectively.  

TABLE VI. PERFORMANCE OF DIFFERENT VARIATIONS BETWEEN THE ORIGINAL 3D-PBBN AND DEPTH-WISE SEPARABLE CONVOLUTION DWS-3D-

PBBN IN HUST-LEBW [12] DATASET 

Network Parameters 
Left Eye Right Eye 

Pre Rec F1 Pre Rec F1 
P2B2 437442 0.7208 ± 0.0660 0.7207 ± 0.1332 0.7120 ± 0.0803 0.7200 ± 0.0420 0.7467 ± 0.0867 0.7286 ± 0.0364 

P3B3 7583362 0.7541 ± 0.0491 0.7360 ± 0.0769 0.7414 ± 0.0375 0.7299 ± 0.0435 0.7587 ± 0.0832 0.7404 ± 0.0401 

DWS-P2B2 7583362 0.7415 ± 0.0996 0.7415 ± 0.0996 0.7384 ± 0.0630 0.7187 ± 0.0504 0.7884 ± 0.0578 0.7433 ± 0.0159 

DWS-P3B3 455170 0.7378 ± 0.0392 0.7442 ± 0.0610 0.7391 ± 0.0323 0.7266 ± 0.0709 0.7788 ± 0.0989 0.7468 ± 0.0603 

 

Fig. 7 shows the learning curves of different model 

variants after training with batch size 16, learning rate 

0.001, 200 iterations. DWS-P2B2 and DWS-P3B3 have 

shown to converge to the same loss performance faster 

than P2B2 and P3B3, whereas P3B3 might need more 

iterations to gain stability 

 

Figure 7. Learning curves of the variants P2B2, P3B3, DWS-P2B2, 

DWS-P3B3 after 200 epochs, batch size = 16, learning rate = 0.001. 

 

2) Comparison with baseline models 

Table VII compares the result of the proposed model 

DWS-P3B3 trained in fold with highest F1-score on the 

testing set HUST-LEBW [12], with best result of the 

original P3B3, along with recent methods for eye blinking 

detection. The table indicates that the KLT tracker based 

technique proposed by Drutarovsky et al. [8] obtained very 

poor results, since its development was limited to indoor 

videos and a limited number of persons. The VGG-16 

based model proposed by Daza et al. [11] obtained the 

highest Recall score 96.03% for only left eye images, but 

worse Precision and F1 than other more recent approaches, 

which is probably due to the constrained database it was 

trained on, and the inability to capture temporal features. 

Hu et al. [12] with a LSTM based model achieved the 

highest Recall score 83.33% for right eye images, while 

Bekhouche et al. [6] with 3D-PBBN outperformed other 

methods in both Precision and F1 of 76.92% and 79.36% 

respectively in left eye images.  

It can be seen that Hu et al. [12] and Bekhouche et al. 

[6] are the two methods that leverage both spatio-temporal 

features for the detection of eye blinking, and they 
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obtained much higher performance in comparison to the 

previous methods with sole consideration to spatial 

features. A main advantage of the 3D-PBBN proposed by 

Bekhouche et al. [6] is utilizing pyramid blocks, which 

enable the ability to extract spatio-temporal features at 

multi resolutions, without the need for a deeper network. 

Meanwhile, the proposed model 3D-PBBN with depth-

wise separable convolution (DWS-P3B3) achieved good 

Precision 82.46% and F1 80.97% scores for sequences of 

right eye, though performed worse than P3B3 in left eye 

sequences. 

TABLE VII. PERFORMANCE COMPARISON BETWEEN DIFFERENT EYE-

BLINKING DETECTION METHODS ON HUST-LEBW [12] DATASET 

Method Eye Index Precision Recall F1 

Drutarovsky et al. 

(2014) [10] 

Left 0.4757 0.1190 0.1904 

Right 0.2860 0.0952 0.1428 

Daza et al. (2020) 

[8] 

Left 0.6080 0.9603 0.7446 

Right 0.7348 0.7950 0.7637 

Hu et al. (2020) 

[9] 

Left 0.7385 0.7805 0.7589 

Right 0.7778 0.8333 0.8046 

Bekhouche et al. 

(2022) [6] (P3B3) 

Left 0.7692 0.8196 0.7936 

Right 0.7703 0.8253 0.7969 

Proposed DWS-

P3B3 

Left 0.7285 0.8360 0.7786 

Right 0.8264 0.7936 0.8097 

 

V. DISCUSSION 

The results of this study in the preprocessing part have 

shown that the classification performance of the 3D PBBN 

based model can be considerably affected by different 

interpolation methods. Bicubic has shown its superior 

performance in both Recall and F1 of the detection model 

for the upsampling task, as previously reported in other 

studies analyzing the effects of interpolation methods on 

deep learning models [4]. Meanwhile, bilinear method 

brought the best Precision and F1 of the classifier for the 

downsampling task, which is different to the Area method 

reported by OpenCV for being usually favorable in 

practice for image decimation [16].  

Importantly, regarding the eye blinking detection 

models using PBBN-based approach, increasing the 

number of pyramids and the number of branches per 

pyramid still generally showed an increase in its 

performance for all the evaluated metrics Precision, Recall, 

and F1, according to Table VII, but trading off with 

increasing the model size. Therefore, our proposed model 

DWS-PBBN, implementing depth-wise separable 

convolution into each convolutional layer within every 

branch of each pyramid, has significantly reduced the 

number of parameters when increasing the number of 

pyramids and branches, allowing to have a more complex 

network with higher feature extraction ability. The results 

after 15-fold cross validation have shown that the proposed 

DWS-P3B3 could not only reduce the original model 

parameters to only 6%, but also outperformed the original 

P3B3 in Recall metric of both left and right eye sequences. 

A model with higher Recall means having lower false 

negatives, which also means having lower chance of 

missing an eye-blink. This might be important for some 

tasks in which the detection of an eye-blink is critical, such 

as driver drowsiness detection, liveness detection or face 

anti-spoofing. 

However, there remains certain challenges and 

limitations in the evaluated dataset HUST-LEBW [12], 

such as not fully closed eye samples due to low sampling, 

artifacts on eyes such as makeup confusing the classifier, 

dramatic lightning conditions, all of which might result in 

lower detection performance of both original P3B3 and 

DWS-P3B3. Examples of misclassification samples due to 

these limitations are illustrated in Fig. 8. Additionally, a 

potential future work is to design a model to detect 

multiple eyeblinks in a sequence, however, HUST-LEBW 

[12] contains only single eyeblinks, and thus it might not 

be suitable for this purpose. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 8. The failure cases of both PBBN and DWS-PBBN approaches 

evaluating on HUST_LEBW [12]. (a) False negative eyeblink (due to eye 

not fully closed). (b) False positive non-eyeblink (due to makeup around 

eye). (c) Dramatic lightning condition (eye features are barely visible in 

some samples). 

VI. CONCLUSION 

In order to improve eye blinking recognition, the 

findings of this study’s preprocessing section have 

demonstrated that various interpolation techniques may 

significantly alter the classification performance of the 3D 

PBBN-based model. For the upsampling task, Bicubic is 

one of five interpolation algorithms that has demonstrated 

its superior performance in both Recall and F1 of the 

detection model. In the meanwhile, the Bilinear method 

provided the classifier with the best Precision and F1 for 

the downsampling task. In addition, this paper utilized 

depth-wise separable convolution to increase model 

complexity while reducing the number of network 

parameters. The proposed DWS-PBBN has increased the 

model complexity from DWS-P2B2 to DWS-P3B3 to 

obtain higher feature extraction ability, while keeping the 

number of parameters under 6% with a sacrifice of only 

1.63% and 0.33% in the Precision of left and right eye 

respectively, in comparison with P3B3. Additionally, the 

proposed model DWS-PBBN also maintained to 

outperformed PBBN in the Recall metric in most scenarios, 

which is essential for some eye blinking applications 

where the missing of true eye blinks pays a high cost. Our 

source code can be found at: 

https://github.com/bachzz/DWS-PBBN 

As future work, we will attempt to investigate further 

into real-time constraints and implement two global hyper-
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parameters width multiplier and resolution multiplier 

proposed in MobileNets [17], in order to address the 

tradeoff between latency and accuracy of the model. These 

hyper-parameters allow the depth-wise separable 

convolution model to be designed with the right size 

depending on the resource and accuracy of the problem, 

which is real time eye blinking detection in this case. 
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