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Abstract—The use of 3D reconstruction in computer vision 

applications has opened up new avenues for research and 

development. It has a significant impact on a range of 

industries, from healthcare to robotics, by improving the 

performance and abilities of computer vision systems. In this 

paper we aim to improve 3D reconstruction quality and 

accuracy. The objective is to develop a model that can learn 

to extract features, estimate a Supershape parameters and 

reconstruct 3D directly from input points cloud. In this 

regard, we present a continuity of our latest works, using a 

CNN-based Multi-Output and Multi-Task Regressor, for 3D 

reconstruction from 3D point cloud. We propose another new 

approach in order to refine our previous methodology and 

expand our findings. It is about “Reg-PointNet++”, which is 

mainly based on a PointNet++ architecture adapted for 

multi-task regression, with the goal of reconstructing a 3D 

object modeled by Supershapes from 3D point cloud. Given 

the difficulties encountered in applying convolution to point 

clouds, our approach is based on the PointNet ++ 

architecture. It is used to extract features from the 3D point 

cloud, which are then fed into a Multi-task Regressor for 

predicting the Supershape parameters needed to reconstruct 

the shape. The approach has shown promising results in 

reconstructing 3D objects modeled by Supershapes, 

demonstrating improved accuracy and robustness to noise 

and outperforming existing techniques. Visually, the 

predicted shapes have a high likelihood with the real shapes, 

as well as a high accuracy rate in a very reasonable number 

of iterations.  Overall, the approach presented in the paper 

has the potential to significantly improve the accuracy and 

efficiency of 3D reconstruction, enabling its use in a wider 

range of applications.  

Keywords—3D reconstruction, Convolution Neural Network 

(CNNs), multi-output regressor, multi-task regressor, 3D 

point cloud, Supershapes, PointNet, PointNet++, deep 

learning 

I. INTRODUCTION

The task of 3D reconstruction is a crucial component of 

computer vision, as it facilitates the creation of precise 3D 

models of various objects and scenes using different types 

of data. The role of 3D reconstruction is crucial in various 

Manuscript received May 31, 2023; revised June 12, 2023; accepted July 
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fields such as medical imaging, facial recognition [1], 

robotics, computer graphics, and many more. In medicine, 

3D reconstruction plays a vital role in diagnosis and 

surgical planning, enabling doctors to examine and 

analyze the internal structures of a patient’s body. In 

robotics, 3D reconstruction helps robots to perceive their 

environment, enabling them to navigate and perform tasks 

autonomously. In computer graphics, 3D reconstruction is 

used to create lifelike virtual environments and characters 

for movies, games, and simulations. Overall, 3D 

reconstruction plays an important role in advancing our 

understanding and application of various fields. 

3D reconstruction can also be used to enhance computer 

vision systems, enabling them to better perceive and 

understand the 3D structure of objects and scenes.  

3D reconstruction and computer vision are 

interdependent fields that work together to advance our 

understanding and application of visual information. 

However, 3D reconstruction is a complex and challenging 

task that requires sophisticated algorithms and specialized 

techniques to achieve accurate results. One of the main 

difficulties in 3D reconstruction is dealing with noisy and 

incomplete data, which can lead to inaccuracies in the 

reconstructed 3D models.    Additionally, the process of 

3D reconstruction often involves integrating data from 

multiple sources, such as images, or point clouds, or even 

sketches [2], which requires careful calibration and 

alignment to ensure consistency and accuracy in the final 

3D model. Despite these challenges, advances in computer 

vision and machine learning have enabled significant 

progress in the field of 3D reconstruction, with new 

methods and techniques continually emerging to enhance 

the accuracy and efficiency of the process. 

In recent years, there has been a growing interest in 

using deep learning approaches for 3D reconstruction. 

This is due to the impressive capabilities of Artificial 

Intelligence (AI) algorithms, such as Convolutional Neural 

Networks (CNNs) [3] and Recurrent Neural Networks 

(RNNs) [4], in handling complex data and learning high-

level features that are useful for 3D reconstruction. These 
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deep learning approaches have shown significant 

improvements in the accuracy and efficiency of 3D 

reconstruction, as they can learn to extract relevant 

features from images, point clouds, or other types of data, 

and use them to construct 3D models. Additionally, deep 

learning models can handle noisy and incomplete data 

more robustly than traditional methods, making them well-

suited for real-world applications. However, deep learning 

approaches for 3D reconstruction still face many 

challenges, such as the need for large amounts of high-

quality training data, as well as the potential for overfitting 

and other issues. Nonetheless, the promise of deep learning 

in 3D reconstruction is driving significant research and 

development efforts in the field. 

Our work is a contribution to the ongoing research in 

using deep learning for 3D reconstruction. Specifically, we 

focus on modeling 3D objects using a parametrized surface, 

known as Supershapes [5]. Supershapes are a class of 

geometric shapes that can be defined by a small set of 

parameters, making them well-suited for use in deep 

learning models. By using Supershapes, we aim to 

improve the accuracy and efficiency of the 3D 

reconstruction process.  

Our contribution involves building upon our previous 

research, which presented a CNN-based multi-output 

regressor and a CNN-based multi-task regressor [6], using 

PointNet [7] as base architecture. This time around, we 

propose to apply a multi-task regressor based on the base 

architecture of PointNet++ [8]. By doing so, we aim to 

further enhance the efficiency and accuracy of our 3D 

reconstruction approach. 

In our previous research, we demonstrated the 

effectiveness of a CNN-based multi-output/multi-task 

regressor for estimating the Supershape parameters 

required for 3D reconstruction. This approach allowed us 

to estimate multiple parameters simultaneously, improving 

the efficiency and accuracy of the reconstruction process. 

However, the use of a CNN-based approach also presented 

some limitations in terms of computational complexity. 

To address this limitation, we propose to adapt the base 

architecture of PointNet++ to perform multi-task 

regression. By doing so, we can leverage the power of 

PointNet++ to perform feature extraction from 3D point 

clouds and use it in conjunction with a multi-task regressor 

to estimate Supershape parameters. This approach is 

expected to improve the efficiency and accuracy of the 3D 

reconstruction process by reducing computational 

complexity. And to address the limitations of the PointNet 

architecture, we have focused our attention on the 

PointNet++ architecture. PointNet++ is an improved 

version of the PointNet architecture that introduces a 

hierarchical feature learning approach to 3D point clouds. 

This approach allows for the efficient processing of large-

scale point clouds and improves the accuracy of feature 

extraction. By leveraging the advantages of PointNet++, 

we aim to improve the accuracy and efficiency of our 3D 

reconstruction approach. 

We will adapt and adjust the PointNet++ architecture to 

perform multi-task regression, similar to our previous 

approach with PointNet. This will involve modifying the 

classification network in PointNet++ to a multi-task 

regressor that can estimate Supershape parameters. 

By combining the advantages of PointNet++ with multi-

task regression, we believe that we can significantly 

improve the efficiency and accuracy of our 3D 

reconstruction approach. This is a crucial step towards the 

development of more advanced and efficient 3D 

reconstruction techniques for a range of applications. 

The article has four main parts. First is the literature 

review, summarizing the latest in CNNs with a focus on 

PointNet and PointNet++ and comparing their strengths 

and weaknesses. The second part, methodology, explains 

the study components, introduces Supershapes, and details 

PointNet++ architecture, including multitask learning. The 

third part shares experimental results, discussing datasets, 

metrics, and comparing with previous work. The last part 

concludes findings, highlights contributions, and suggests 

future research directions. 

II. LITERATURE REVIEW 

The field of 3D reconstruction has experienced a 

revolutionary transformation thanks to the advancements 

in deep learning techniques. These techniques have 

brought about significant improvements in the accuracy 

and efficiency of reconstructing complex objects and 

scenes. One pivotal milestone in the evolution of deep 

learning for 3D reconstruction can be attributed to the use 

of Convolutional Neural Networks (CNNs) for tasks such 

as 3D shape classification and segmentation.  

The ability of CNNs to process point clouds has opened 

up new avenues for advancing the field of 3D 

reconstruction and enhancing its practical applications. By 

effectively analyzing and interpreting the spatial 

relationships between points, CNNs can extract 

meaningful features from point clouds, enabling accurate 

and efficient processing of 3D shape data. 

Consequently, CNNs have been extensively applied in 

various domains, including object detection, recognition, 

and pose estimation, by leveraging the information 

contained within point cloud data. 

A. State of Art: CNNs 

In the realm of 3D reconstruction, two notable 

advancements in deep learning techniques are PointNet 

and PointNet++. These architectures have made 

significant contributions to the processing and analysis of 

point cloud data. 

PointNet [7] was one of the pioneering architectures that 

introduced the concept of directly processing unordered 

point cloud data with a CNN. It treats each point as an 

individual input and uses shared MLPs to extract local 

features. PointNet then aggregates these features to obtain 

a global feature representation of the entire point cloud. 

PointNet has been applied to tasks like object classification, 

semantic segmentation, and shape retrieval. 

As an extension of PointNet, PointNet++ [8] introduced 

a hierarchical neural network architecture for point cloud 

analysis. It aims to capture both local and global contextual 

information by employing a series of Set Abstraction (SA) 

and Feature Propagation (FP) layers. SA layers 
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downsample the input point cloud by selecting 

representative points and extracting local features. FP 

layers then upsample and propagate refined features to 

higher-resolution layers. PointNet++ has demonstrated 

improved performance in tasks such as semantic 

segmentation, object part segmentation, and shape 

classification. 

Dynamic Graph CNN (DGCNN) [9] is also one of the 

notable CNN-based architectures specifically designed for 

point cloud processing. It leverages the concept of graphs 

to process point clouds. It constructs a k-nearest neighbor 

graph for each point in the point cloud and employs 

EdgeConv layers to aggregate information from 

neighboring points. The EdgeConv layers operate on the 

graph structure and update the features of each point based 

on its neighbors, capturing local geometric relationships. 

DGCNN has been successful in tasks like object 

classification, part segmentation, and scene classification. 

PointCNN [10] introduces a convolution operation for 

point cloud data, that is independent of local order. 

It defines a permutation-invariant kernel function that 

operates on local neighborhoods of points. PointCNN 

leverages this kernel function to perform convolutions on 

the point cloud, capturing local patterns and preserving 

permutation invariance. This architecture has been applied 

to tasks like object classification, semantic segmentation, 

and part segmentation. 

And, the Kernel Point Convolution (KPConv) [11] 

combines the concept of point clouds with kernel 

convolutions. It represents each point as a kernel with 

learnable weights and defines convolutions by measuring 

the influence of each kernel on its neighboring points. 

KPConv enables efficient and flexible convolutions on 

point cloud data and has shown promising results in tasks 

like object segmentation, semantic segmentation, and 3D 

shape completion. 

B. Comparative Analysis 

The performance of CNN-based architectures for point 

cloud processing can vary depending on the specific task, 

dataset, and evaluation metrics. It’s important to note that 

the performance of these architectures is often evaluated 

based on different benchmarks and datasets, making direct 

comparisons challenging. However, here are a few 

considerations regarding the performance of some popular 

architectures: 

PointNet++ [8] has demonstrated improved 

performance compared to its predecessor, PointNet, in 

various tasks such as semantic segmentation, object part 

segmentation, and shape classification. Its hierarchical 

architecture allows it to capture both local and global 

contextual information, leading to enhanced performance 

in capturing fine-grained details and understanding 

complex 3D structures. 

KPConv [11] has shown impressive performance in 

tasks like object segmentation, semantic segmentation, and 

3D shape completion. Its ability to efficiently perform 

kernel convolutions on point cloud data and adapt to 

varying point densities contributes to its effectiveness. 

KPConv has achieved state-of-the-art results on several 

benchmarks, showcasing its performance in handling point 

cloud data. 

DGCNN [9] has been successful in tasks like object 

classification, part segmentation, and scene classification. 

By incorporating graph structures and utilizing EdgeConv 

layers to capture local geometric relationships, DGCNN 

has achieved competitive performance in various point 

cloud processing tasks. 

It’s worth mentioning that the performance of these 

architectures can also depend on factors such as dataset 

size, complexity, and the availability of labeled data for 

training. Furthermore, advancements in these architectures 

and the introduction of newer models can influence 

performance. It is recommended to consult the latest 

research and benchmark evaluations to obtain more 

specific and up-to-date information on the performance of 

CNN-based architectures for point cloud processing. 

C. PointNet Vs PointNet++  

PointNet [7] is a pioneering deep learning architecture 

that operates directly on unordered point clouds. Unlike 

traditional methods that require structured inputs, PointNet 

can take in raw point cloud data without any predefined 

ordering or connectivity. It leverages a symmetric function 

to process individual points independently and then 

aggregates their features to obtain a global representation 

of the entire point cloud. This holistic approach enables 

PointNet to learn powerful features and effectively 

perform tasks such as object recognition, segmentation, 

and classification on point cloud data. 

Building upon PointNet’s success, PointNet++ [8] 

further extends the capabilities of deep learning networks 

for point cloud analysis. PointNet++ addresses one of the 

limitations of PointNet, which is the lack of local 

contextual information. PointNet++ introduces a 

hierarchical neural network architecture that gradually 

builds a more detailed and contextual understanding of the 

point cloud data. It achieves this by employing a set of 

PointNet modules at different scales, where each module 

processes a subset of points and captures local structures. 

These hierarchical modules are designed to capture both 

local and global information, allowing PointNet++ to 

achieve enhanced performance in tasks such as 

segmentation, object part classification, and scene 

understanding. 

Both PointNet and PointNet++ have significantly 

advanced the field of 3D reconstruction by enabling direct 

processing of unordered point cloud data. These 

architectures have proven effective in capturing essential 

features and contextual information from point clouds, 

leading to improved accuracy and efficiency in various 

applications. With ongoing research and development, it is 

likely that these architectures will continue to evolve, 

providing even more powerful tools for analyzing and 

reconstructing 3D data. 

PointNet and PointNet++ have demonstrated robustness 

to variations in point cloud inputs, such as different point 

densities, rotations, and translations. This adaptability 

allows them to handle diverse and real-world point cloud 

data, making them suitable for applications where the 

quality and characteristics of the input data may vary. Both 
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architectures exhibit scalability, enabling them to handle 

point clouds with varying numbers of points. This 

flexibility is essential when dealing with complex scenes 

or large-scale datasets, as it ensures efficient processing 

and analysis without sacrificing performance. 

PointNet and PointNet++ have showcased 

generalization capabilities, meaning they can learn 

representations that are applicable across different datasets 

and tasks. This generalizability allows these architectures 

to be utilized in a wide range of applications and domains, 

providing flexibility and versatility in various 3D 

reconstruction scenarios. They have been particularly 

effective in semantic segmentation tasks, where the 

objective is to assign semantic labels to individual points 

in a point cloud. By considering local and global features, 

these architectures can accurately classify and segment 

points, enabling more detailed and comprehensive 

understanding of 3D scenes. 

PointNet and PointNet++ have also shown promise in 

object detection and pose estimation tasks. By leveraging 

their ability to capture global features and local contextual 

information, these architectures can effectively identify 

and localize objects within a point cloud, contributing to 

applications such as robotics, augmented reality, and 

autonomous driving. While initially designed for point 

cloud data, the concepts and principles underlying 

PointNet and PointNet++ have been extended to other 

modalities, such as 3D meshes and volumetric data. This 

adaptability highlights the potential for these architectures 

to contribute to the analysis and reconstruction of 3D data 

in various forms. 

Overall, PointNet and PointNet++ have not only 

introduced groundbreaking architectures for point cloud 

analysis but have also inspired further exploration and 

innovation in the field of 3D reconstruction. Their 

robustness, scalability, generalizability, and applicability 

to various tasks have solidified their significance and 

paved the way for advancements in understanding and 

utilizing 3D data. 

III.  METHODOLOGY 

A. The Parametric Surfaces: Supershapes 

In the realm of 3D modeling, Supershapes which is 

introduced by the mathematician Johan Gielis [5]; enable 

the creation of parametrized surfaces and objects with 

complex and fascinating geometries. 

The concept behind Supershapes lies in defining a set of 

adjustable parameters that can modify the shape of an 

object or surface. A Supershape S can be expressed as 

follow [5]:         

            𝑆 = [𝑎, 𝑏, 𝑚, 𝑀, 𝑛1, 𝑛2, 𝑛3, 𝑁1, 𝑁2, 𝑁3]           (1) 

𝑚 : Symmetry parameter, this parameter controls the 

number of radial arms in the Supershape.  

𝑀 : Symmetry parameter, this parameter controls the 

number of repeating segments around the Supershape.  

a, b: The scaling parameters that control the overall size 

of the shape.  

n1, n2, n3, N1, N2, N3: The shape parameters coefficients. 

By manipulating these parameters, e.g., Table I, one can 

achieve a wide range of visually appealing and diverse 

shapes, e.g., Fig. 1. The Supershape formula serves as a 

mathematical framework to generate these shapes and 

surfaces by assigning appropriate values to the parameters. 

TABLE I. SUPERSHAPES PARAMETERS REPRESENTED IN FIG. 1 

S m n1 n2 n3 M N1 N2 N3 

(a) 4 10 10 10 4 10 10 10 

(b) 8.52 33 21.39 −33.40 2.57 0.10 −5.13 1.71 

(c) 7.50 1.80 1.50 0.90 16.20 1 1.60 1.10 

(d) 6 3 7 6 2 6 1 3 

(e) 8 8 10 14 9 14 6 14 

(f) 1 7 2 2 4 2 13 6 

(g) 0 1.07 0 5 10 6 0 11 

(h) 12.80 16.80 9.20 10 17.70 7.20 11.10 9.20 

 

 
(a) 

 
(b) (c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Figure 1. Examples of Supershapes. 

B. PointNet++ Architecture  

PointNet++ [8] is an advanced architecture designed for 

deep learning on point clouds, enabling efficient analysis 

and processing of 3D data. It improves upon the original 

PointNet model by introducing hierarchical feature 

learning, allowing the capture of both local and global 

information. The architecture, e.g., Fig. 2, consists of four 

key components: input transformation, PointNet Set 

Abstraction (SA), PointNet Feature Propagation (FP), and 

global feature extraction. 

In the first step, the input transformation network is 

applied to align the points in the point cloud, ensuring 

invariance to input permutations. This network learns a 

linear transformation for each point, normalizing the input 

across different point clouds. This process enables the 

model to handle variations in point order or orientation. 

 

 

Figure 2. PointNet++ architecture [8]. 

The SA module is the heart of PointNet++. It performs 

hierarchical feature learning by iteratively down-sampling 

the point cloud and extracting local features. It starts by 

sampling a set of representative points called centroids. 
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These centroids act as seed points for defining local 

regions. The points within the vicinity of each centroid are 

then grouped together using a spatial search algorithm. 

Within each local region, a PointNet module is applied to 

capture local features, utilizing shared Multi-layer 

Perceptron (MLPs) to process each point individually. 

The FP module works in conjunction with the SA 

module and is responsible for propagating the learned local 

features to higher-resolution levels. It begins by 

interpolating the local features to align with the centroids 

in the previous level, ensuring spatial consistency. The 

interpolated features are then further processed by a 

PointNet module to refine the propagated information. 

To capture global information, a global feature 

extraction module is applied. It aggregates the features 

from all points in the point cloud, typically using max 

pooling or a similar operation to obtain a fixed-length 

global feature vector. This global feature vector is then 

passed through fully connected layers for tasks such as 

classification or segmentation. 

Overall, PointNet++ leverages hierarchical feature 

learning to capture both local and global information from 

point clouds. By incorporating SA and FP modules, it 

enables efficient processing of 3D data and has shown 

superior performance in tasks like object recognition, 

semantic segmentation, and point cloud completion. Its 

ability to handle unstructured point cloud data makes it a 

powerful tool in various applications related to 3D analysis 

and understanding. 

C. Multitask Learning  

The multi-task learning is a machine learning paradigm 

where a model is trained to perform multiple related tasks 

simultaneously. Instead of training separate models for 

each task, multi-task learning aims to leverage the shared 

information between tasks to improve overall performance. 

In multi-task learning, e.g., Fig. 3, the model is designed 

to have shared hidden layers that capture common patterns 

and features across different tasks. These shared layers 

allow the model to learn representations that are beneficial 

for multiple tasks. Additionally, each task may have its 

own task-specific layers that specialize in capturing task-

specific patterns. 

The specific number of hidden layers and their sizes can 

be determined based on the complexity of the tasks and the 

available data. It is common to experiment with different 

architectures, layer sizes, and activation functions to find 

the optimal configuration for the multi-task regressor. 

Regularization techniques, such as dropout or batch 

normalization, can also be applied to prevent overfitting 

and improve generalization. 

The benefits of multi-task feature learning include 

improved generalization, better resource utilization, and 

the ability to learn from limited labeled data. By jointly 

learning multiple tasks, the model can learn more robust 

representations and better handle variations and 

uncertainties in the data.  

 

 

Figure 3. Multi-task regression. 

D. The Proposed Approach 

This paper presents a novel approach that uses deep 

learning to retrieve the individual parameters of 

Supershape models from point clouds. Specifically, we 

tackle the task of recovering Supershape model parameters 

by formulating it as a prediction problem. The objective is 

to estimate the parameters of a given surface model, 

leveraging the power of deep learning techniques:  

 

    𝑦̂ = [𝑚, 𝑀, 𝑛1, 𝑛2, 𝑛3, 𝑁1, 𝑁2, 𝑁3] ∈  𝑅1×10          (2) 

 

We aim to achieve an estimation ŷ = f(x, W), where f 

represents the Reg-PointNet++ model with weights W, for 

the input x (the 3D object), as close as possible to y. To 

accomplish this, the network needs to be trained on a large 

number of 3D objects in point cloud format. The training 

of Reg-PointNet++ utilizes the stochastic gradient descent 

optimization algorithm ADAM minibatch (an improved 

version of SGD mini-batch) that efficiently minimizes the 

loss function on the available training dataset. 

The objective is to optimize the model’s weights W to 

minimize the discrepancy between the predicted output ŷ 

and the true output y for each input x. The loss function 

measures the dissimilarity between the predicted and true 

values, capturing the model’s performance. By employing 

the ADAM minibatch algorithm, the optimization process 

efficiently updates the weights based on gradients 

computed from subsets of the training dataset, known as 

mini-batches. 

The following Fig. 4 illustrates the architecture of our 

Reg-Pointnet++ network: 

Reg-Pointnet++ is a network with PointNet++ as the 

base architecture, extended with a multitask regressor to 

estimate the parameters of a Supershape. The input to the 

network would be a 3D point cloud representing the object 

we aim to reconstruct. 

The PointNet++ network would be used to extract 

meaningful features from the point cloud. This may 

involve transformation and hierarchical grouping 

operations to capture the spatial relationships between the 

points. 
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Figure 4. Architecture of Reg-PointNet++. 

The features extracted by PointNet++ would then be 

used to represent the object in a compact and informative 

manner. 

The extension with Multitask Regressor will perform 

the prediction of the Supershape parameters. It takes the 

features extracted by PointNet++ as input. 

This additional branch consists of three hidden layers 

that have respective sizes of 512, 128, and 64, and are 

designed to extract and learn complex features from the 

input data. In conclusion, the network incorporates a 

multiple output layer that utilizes a straightforward linear 

regression to compute the surface parameters. This allows 

the network to achieve precise predictions of the surface 

parameters for the given input object. 

The multitask regressor will be trained by minimizing 

an appropriate loss function, which compares the 

network’s predictions to the ground truth values of the 

Supershape parameters. 

To assess the performance of our Regressor model, we 

employ the L2 norm-based distance metric between the 

predicted Supershape parameters ŷ and the pre-defined 

parameters y. The objective function is defined as: 

 

L2 (y, ŷ) = ||y−ŷ||2                                          (3)  

 

By minimizing the L2 distance between the predicted 

and target Supershape parameters during the training 

process, our goal is to ensure that our model acquires the 

ability to make accurate predictions and reduce the error in 

our estimations. This approach allows us to quantitatively 

evaluate the accuracy of our model and ascertain its 

generalization capabilities when faced with new, unseen 

data. 

The L2 norm computes the square root of the sum of 

squared differences between the corresponding elements 

of y and ŷ. This distance metric provides a measure of the 

overall dissimilarity between the predicted and target 

values of the Supershape parameters. The objective 

function guides the learning process, driving the model to 

minimize the discrepancy between its predictions and the 

ground truth. 

To ensure accurate predictions of the Supershape 

parameters for a given 3D object x, our Reg-PointNet++ 

model undergoes training on a substantial dataset 

comprising 3D objects represented as point clouds. When 

presented with a 3D object x as input, the model utilizes its 

learned weights W to generate a prediction of the 

Supershape parameters ŷ. 

During training, the model is exposed to a sequence of 

input-output pairs (x, y), where x represents a 3D object in 

the form of a point cloud, and y corresponds to the pre-

defined set of Supershape parameters. By processing the 

input x, the model predicts the Supershape parameters ŷ. 

The subsequent step involves calculating the loss between 

the predicted parameters ŷ and the ground truth parameters 

y, utilizing the L2 distance metric. This metric quantifies 

the dissimilarity between the predicted and target values of 

the Supershape parameters. 

To update the model’s weights W and refine its 

predictive capabilities, the ADAM minibatch algorithm is 

employed. This optimization algorithm iteratively adjusts 

the weights based on gradients computed from mini-

batches, which are subsets of the training dataset. By 

minimizing the loss function, the model incrementally 

improves its predictions, striving to accurately estimate the 

Supershape parameters. 

The training process involves repeating the presentation 

of input-output pairs, the calculation of loss, and the 

subsequent weight updates for numerous iterations. This 

iterative procedure continues until the model converges to 

an optimal set of weights that enable it to produce accurate 

predictions of the Supershape parameters for new, unseen 

3D objects. 

Through this training methodology, our Reg-

PointNet++ model acquires the ability to generalize and 

make accurate predictions of the Supershape parameters 

for various 3D objects. By leveraging the power of the 

ADAM minibatch algorithm and the informative point 

cloud representations, the model optimizes its 

performance, enabling it to handle diverse and complex 3D 

shapes effectively. 

The entire network would be trained iteratively by 

adjusting the weights of the different branches based on 

the total loss calculated from the network’s predictions for 

all tasks. The goal is to optimize the network to accurately 

estimate the parameters of the Supershape from the input 

point cloud. This combined architecture of PointNet++ and 

a multitask regressor would leverage the 3D representation 

capabilities of PointNet++ while performing precise 

parameter estimations of the Supershape. 

IV. EXPERIMENTAL RESULTS 

A. The Dataset 

In order to train and evaluate our Reg-Pointnet++, we 

create a synthetic DataSet of 3D shapes using a specific 

algorithm. This algorithm takes into account three steps. 

The first step is the generation of 3D objects. We 

generate 3D shapes by randomly varying the Supershape 

parameters within predefined bounds. This allows us to 

create a diverse set of shapes for training and evaluation. 

The second step is the resampling and dataSet organization. 

To ensure consistency in the input data, we resample each 

point cloud by reducing the number of points to 512 per 

object. After resampling, we organize the point clouds into 

a DataSet, with 70% of the objects allocated for training 
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(9300 objects) and the remaining objects reserved for 

testing (2300 objects). 

The last step is the data representation. The data used 

for training and evaluation is represented in the form of 

coordinates of the points in the ply format. Each object is 

described by an ASCII file containing the (x, y, z) 

coordinates of all the points. 

By following this process, we create a synthetic DataSet 

that enables us to effectively train and evaluate our Reg-

Pointnet++. 

Here is an example of generated objects with 512 points 

under different views (Fig. 5): 

  

  

Figure 5. DataSet object in point cloud under different views. 

B. Performance Metrics  

To assess the effectiveness of our CNN model in 

predicting the Supershape parameters, we utilize the Mean 

Squared Error (MSE) as our evaluation metric for each 

parameter p ∈ {m, n1, n2, n3, M, N1, N2, N3, a, b} during 

experimentation. The MSE is calculated as follows: 

 

𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1                   (4) 

 

The MSE is a widely adopted metric for evaluating the 

accuracy of regression models, including our CNN based 

multitask regressor. It quantifies the average squared 

difference between the predicted values (yî)  and the true 

values (𝑦𝑖) of the Supershape parameters across a given set 

of test data. 

For each parameter p, the MSE is computed by 

averaging the squared differences between the predicted 

and true values over all test samples. A lower MSE value 

indicates a higher level of accuracy in predicting the 

Supershape parameters. This metric is commonly 

employed in machine learning to evaluate the performance 

of regression models. 

By employing MSE as our evaluation metric for the 

Reg-Pointnet++, we can measure the accuracy of the 

model in predicting the Supershape parameters and 

compare its performance against other regression models 

or different iterations of our own model. This facilitates 

iterative refinement of the model’s architecture and 

hyperparameters to achieve enhanced performance in 

predicting the Supershape parameters.  

To optimize the performance of our Reg-Pointnet++ 

model, we employ the ADAM, which is known for its 

effectiveness in minimizing the loss function and 

converging to an optimal set of weights. It combines the 

advantages of the AdaGrad [12] and RMSProp [13] 

techniques by utilizing adaptive learning rates for each 

parameter, leading to faster convergence and better 

generalization. During training, ADAM updates the model 

weights using both first-order gradients (momentum) and 

second-order gradients (RMSProp), allowing for adaptive 

adjustment of the learning rate based on the model’s 

current state. By using ADAM with minibatch training, we 

efficiently update the weights of our Reg-Pointnet++ 

model using gradients calculated on small subsets of the 

training data, enabling effective handling of large datasets 

and accelerated convergence. Overall, the utilization of the 

ADAM optimization algorithm in conjunction with our 

CNN-based Multi-Output Regressor model plays a crucial 

role in achieving accurate predictions of the Supershape 

parameters and enhancing the overall performance of our 

model. 

C. Training and Testing 

The results over 400 iterations of the evolution of the 

global precision (Accuracy for the training and the test) are 

represented by Figs. 6–8. 

 

 

Figure 6. Evolution of overall precision (Accuracy, Training). 

 

Figure 7. Evolution of overall accuracy (Accuracy, Test). 

D. Results on Test Objects 

Input: object in cloud points 

Output: Supershapes parameters (10 base values) 

The following figure represents the results obtained for 

four different objects provided as input under two different 

views. Objects in red represent input objects, and those in 

green represent result objects. 

There are no obvious imperfections. All prediction 

reconstructions perfectly match the actual shapes. 
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The results shown in Table II support the visual results. 

It can be seen that the predicted parameters do not 

represent a great difference with the parameters of the 

input form. This confirms the quality of the obtained 

reconstruction. 

 

  

Figure 8. Reconstruction of 4 different objects provided as input to Reg-PointNet++ under two different views. 

TABLE II. TEST RESULTS WITH MULTI-TASKING ARCHITECTURE ON 4 DIFFERENT OBJECTS 

Supershapes param. m 𝑛1 𝑛2 𝑛3 M 𝑁1 𝑁2 𝑁3 a b 

Object 1 
Input 1 70 31 27 5 19 83 30 1 1 

Output 2.9972 71.0867 29.8220 26.6507 5.4638 23.4425 81.1402 28.0925 0.9954 0.9954 

Object 2 
Input 6 99 54 33 5 81 95 78 1 1 

Output 5.7735 97.3337 54.2550 33.9757 5.8488 82.8021 91.6819 74.9392 1.0009 1.0009 

Object 3 
Input 7 109 87 97 9 90 74 68 1 1 

Output 6.4273 106.4220 85.8470 97.9915 6.8821 86.3549 74.7567 66.7051 1.0041 1.0041 

Object 4 
Input 6 19 70 28 9 55 32 83 1 1 

Output 4.4713 19.6545 67.1488 29.7228 6.1809 52.2985 32.8960 82.5247 0.9962 0.9962 

E. Evalution and Discussion 

The Table III summarizes the accuracy values of two 

applications of the regressors, in our previous works: 

CNN-based multi-output regressor [6] and CNN-based 

multi-task regressor, with the proposed approach Reg-

Pointnet++. It can be observed that Reg-PointNet++ 

significantly improves accuracy with fewer iterations. 

However, the architecture of the latter is quite heavy and 

requires much more computation compared to the others 

during training. It is worth noting that all experiments were 

conducted on a single CPU (Intel Core i7, 8 cores, 16GB 

RAM) without utilizing CUDA (GPU) acceleration. The 

execution (training, validation, and testing) was halted 

after approximately three days. This resulted in 3000 

iterations for CNN-based multi-output regressor, 2000 

iterations for the Multi-Task Regressor, and only 400 

iterations for Reg-PointNet++ with superior performance. 

This indicates that with more iterations, the Reg-

PointNet++ version holds the promise of further 

improvements in performance but demands additional 

resources (such as NVIDIA GPUs with CUDA support). 

Two limitations can be spotted in our approach. The 

first one, is the network’s dependence on uniformly 

sampled point clouds. The network requires an even 

distribution of points within these regions to operate 

effectively. However, in real-world scenarios, point clouds 

may exhibit non-uniform sampling density, with varying 

point densities in different regions. Addressing this 

limitation and developing techniques to handle non-

uniformly sampled point clouds is an active area of 

research in the field of 3D deep learning. The second one, 

is the creation of the dataset. Since Supershapes are recent 

shapes, there is no dataset available for use. Creating our 

own dataset can be very time consuming.  

TABLE III. COMPARATIVE TABLE 

Approach 
Accuracy 

(%) Train (%) Test 

CNN-based Multi-Output Regressor 

(3000 iterations) 
76.8 74.0 

CNN-based Multi-Task Regressor 

(2000 iterations) 
80.0 72.8 

Reg-PointNet++ 

(400 iterations) 
82.5 79.2 

 

However, given the encouraging results, we can extend 

our research to real-world objects, specifically focusing on 

composite objects. It is extremely challenging to model 

any shape of objects as a closed Supershape surface. To 

understand the problem, we examine industrial 3D objects 

that are composed of simple primitive objects such as 

spheres, cylinders, cones, tori, etc. Constructive Solid 

Geometry (CSG), e.g., Fig. 9 which is a branch of solid 

modeling in computer graphics, can be used to address this 

challenge [14]. 
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Figure 9. Example of an object represented by a CSG tree. 

The Reg-Pointnet++ enables easy retrieval of 

Supershape forms for the primitives used in industrial 

object compositions. An industrial object, provided as a 

point cloud (e.g., obtained from scanning), can have its 

CSG determined, thereby identifying its primitives. These 

primitives can then be represented easily using the 

Supershape forms predicted by our model. 

V. CONCLUSION AND FUTURE WORK 

In this paper, we have introduced a novel approach to 

recover Supershape from points cloud using Deep 

Learning. We have demonstrated that extending the 

PointNet++ model with regressors is capable of achieving 

satisfactory recovery accuracy (80%) in parameter 

prediction, while also reducing the computational time.  

The visual results are highly satisfying and optimal, 

demonstrating the effectiveness of our proposed approach. 

To the best of our knowledge, this work is the first to 

introduce a 3D reconstruction model for Supershapes 

based on regressor models, highlighting the significant 

potential of this research direction.  

While our approach has shown promising results, there 

are several avenues for future research and improvement. 

Among the potential directions that we can explore, the 

improvement of the parameter prediction accuracy for 

Supershapes. This can involve studying advanced neural 

network architectures, or investigating novel loss 

functions. We can also investigate methods to handle noisy 

or incomplete point cloud data which is crucial for real-

world applications. The proposed approach can be 

validated on larger and more diverse datasets, this would 

provide a comprehensive assessment of its performance 

and generalization capabilities. By constructing domain-

specific datasets for Supershape reconstruction, we would 

facilitate fair comparisons with existing methods and 

promote reproducibility. 

By addressing these future research directions, we can 

continue to advance the field of 3D reconstruction for 

Supershapes using deep learning, paving the way for 

practical applications in computer graphics, virtual reality, 

and shape analysis. 
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