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Abstract—This research aims to enhance the performance of 

image-denoising algorithms, particularly in the context of 

Block Matching 3D (BM3D) usage, focusing on improving 

image quality and retaining important information in noisy 

images. The novelty of this research lies in developing more 

effective and efficient image-denoising techniques by 

considering the characteristics of image blocks to improve 

denoising results. The method employed in this research 

involves the development of a new approach enabling the 

application of adaptive 2D and 3D transformations 

depending on the characteristics of the image block being 

processed. The research develops a new approach enabling 

the application of adaptive 2D and 3D transformations 

depending on the characteristics of the image block being 

processed. The results of this research indicate that the 

proposed adaptive approach in the BM3D image denoising 

algorithm can significantly improve denoising performance. 

Experimental results show that performing 2D 

transformations on blocks that do not have sufficiently 

similar blocks can yield better denoising results, especially at 

high noise levels.   

 

Keywords—image denoising, adaptive transformation, image 

processing, Block Matching 3D (BM3D) algorithm  

 

I. INTRODUCTION 

Denoising images serves as a critical pre-processing 
step, essential for a myriad of applications including image 
restoration, visual tracking, and image segmentation to 
function effectively. Within the realm of image processing, 
the enhancement of denoising algorithms holds substantial 
importance, aiding in the enhancement of image quality 
and retention of vital information [1]. Block Matching 3D 
(BM3D) has emerged as the most advanced algorithm in 
image denoising, providing superior performance 
compared to previous methods [2, 3]. However, there is 
still room for improvement in BM3D’s performance. The 
widespread need to address noise interference in images 
cannot be ignored, as such interference often reduces 
visual quality and blurs important information stored 
within, especially in high-quality images across various 
applications such as medical imaging, surveillance, and 
multimedia. On the other hand, although the BM3D 
algorithm is one of the latest algorithms in image denoising, 
there are shortcomings in the approach used, and there are 
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still gaps in the analysis that need to be addressed in the 
approach used by this algorithm. Specifically, the default 
approach of BM3D involves 3D transformation on all 
image blocks without considering whether similar blocks 
are available enough to be used as references. The impact 
of this approach is particularly noticeable at high noise 
levels, which can result in a significant decrease in 
denoising performance. 

The BM3D algorithm by default performs 3D 
transformation on all image blocks without considering 
whether there are enough similar blocks that can be found. 
This results in a decrease in denoising performance, 
especially at high levels of noise. In the analysis of several 
kinds of literature, there has been no similar approach to 
improving the performance of BM3D. Considering the 
shortcomings in the BM3D approach related to the 
universally performed 3D transformation, this research 
attempts to contribute to improving the effectiveness of 
image denoising. Therefore, this study attempts to identify 
existing gaps while proposing a novel method enabling the 
flexible application of both 2D and 3D transformations 
depending on the characteristics of the image blocks in 
question with the hope that the implementation of the 
proposed approach will bring significant improvements in 
image denoising performance, expanding the coverage and 
applicability of the BM3D algorithm in the context of 
handling more complex noise. The main contribution of 
this research is the enhancement of BM3D algorithm 
performance in image denoising through the merging of 
adaptive 2D and 3D transformations, thereby improving 
denoising performance by considering the availability of 
similar blocks in the image. Thus, this research provides 
new insights into developing more effective and efficient 
image-denoising techniques. Additionally, this research 
also demonstrates that the proposed approach can result in 
lower computational time, which is an additional 
contribution to the development of more efficient 
denoising algorithms. 

II. LITERATURE REVIEW 

A. Image Noise 

Image noise refers to random disturbances or artifacts 

that appear in images, which can degrade visual quality 
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and blur the conveyed information. Types of image noise 

can vary, ranging from noise generated by recording 

devices, such as cameras or sensors [4, 5], to noise that 

arises during data processing and transmission [6]. Image 

noise can pose a significant challenge in various 

applications, including photography, medical processing, 

and image recognition, as it can disrupt the interpretation 

and analysis of visual data [5, 7–9]. The importance of 

addressing image noise lies in efforts to maintain the 

integrity of visual information, improve image quality, and 

enhance accuracy in the analysis of various applications. 

Various techniques have been developed to reduce image 

noise, including spatial filters, the use of adaptive 

algorithms, and statistical model-based approaches. For 

instance, Karanam et al. [10] used a statistical model 

approach to reduce image noise in the healthcare field, and 

the results showed that their proposed model had good 

accuracy for binary and multiclass classification of 

fractures. Additionally, noise reduction techniques on 

images using algorithms were also used in [11, 12], and 

their results indicated they could detect the impact of 

applying the Sobel algorithm. Finally, other approaches 

such as variations of spatial filters were also used  

in [13, 14]. Additionally, a profound understanding of the 

sources of noise and their characteristics is crucial for 

selecting and implementing denoising techniques that suit 

the specific needs of the application. 

1) Non-spatially dependent noise 

Non-spatially dependent noise is a type of noise that is 

uniform across the entire image area without regard to the 

structure or visual content. This is often caused by factors 

such as electronic noise in image sensors or signal 

disturbances during data transmission. Examples include 

white noise, which has a uniform frequency spectrum 

across the entire frequency range and can degrade overall 

image quality. Such noise is difficult to remove because 

there is no spatial pattern that can be exploited to 

distinguish it from the original image content. One of the 

main challenges in addressing non-spatially dependent 

noise is separating the noise from relevant signals in the 

image. Because such noise is spread throughout the image 

without a specific pattern, the appropriate approach must 

take into account the statistical characteristics of the noise. 

Effective denoising techniques for such noise often 

involve the use of linear or non-linear filters specifically 

designed to reduce noise without disturbing desired image 

content. The implementation of denoising for non-

spatially dependent noise often requires a compromise 

between reducing noise and preserving important image 

details [15]. Several denoising filters used to address such 

noise include Gaussian filters and median filters. Gaussian 

filters emphasize gradual smoothing without sacrificing 

detail, while median filters are effective in removing 

isolated noise points without blurring significant image 

content. In addition to denoising techniques focused on 

reducing spatial noise, the use of data compression 

techniques can also help mitigate the effects of non-

spatially dependent noise. By reducing the amount of data 

that needs to be stored or transmitted, data compression 

can reduce imperfections caused by noise without 

sacrificing important information in the image. 

Compression techniques such as JPEG, for example, use a 

combination of spatial transformation and calculations to 

create a more compact representation of the image that 

minimizes the effects of non-spatially dependent noise. 

2) Spatially dependent noise 

Spatially dependent noise is a type of noise that exhibits 

specific patterns or structures within digital images. This 

type of noise is often caused by factors such as damage to 

image sensors or disturbances during the data transmission 

process. Common examples of spatial noise include noise 

points, vertical or horizontal lines, or regular noise patterns. 

This noise tends to disrupt visual interpretation and can 

significantly degrade image quality. Spatially dependent 

noise often becomes the primary focus in digital image 

processing due to its more visible and directly noticeable 

impact. Denoising techniques used to address spatial noise 

often leverage spatial information from the image to 

identify and remove such noise. Spatial filters such as 

Gaussian or median filters are often used to smooth images 

and remove spatial noise without sacrificing important 

details in the image [16, 17]. Additionally, spatially 

dependent noise can affect the performance of more 

complex image processing algorithms, such as image 

segmentation or object recognition. Disturbances in spatial 

structure can blur object boundaries and disrupt accurate 

feature extraction [18]. Therefore, reducing spatial noise 

becomes an important step in data preparation before 

running advanced processing algorithms. Although 

spatially dependent noise can pose challenges, appropriate 

denoising techniques can significantly improve image 

quality and analysis results. Common approaches involve 

detecting and removing noise based on spatial 

characteristics such as size, shape, or pattern. By 

understanding the nature of spatial noise and using suitable 

denoising algorithms, image processing can be performed 

more efficiently and accurately. 

3) Related work 

Each type of noise has different denoising techniques. 

In this case, we employ supplementary White Gaussian 

noise alongside various denoising methodologies to 

address noise-related issues in images. This study 

considers noise with three properties. Firstly, the noise 

examined in this investigation remains separate from the 

signal, and systematically, this noise will be added to the 

pixel values. Furthermore, the noise samples under 

examination exhibit independence, thereby necessitating 

that all noise samples be sourced from a uniform 

distribution. 

Recent research has shown significant improvements 

in image-denoising techniques by integrating deep 

learning and adaptive filtering methods. For instance,  

Ju et al. [8] utilized dual-uncertainty estimation to improve 

the classification of medical images with noise. This 

approach combines deep learning with adaptive noise 

reduction to enhance classification accuracy [8].  

Kong et al. [11] proposed an improved Non-Local Means 

(NLM) algorithm for CT image denoising. The method 

adapts the search window size based on the noise level, 

thereby enhancing the denoising effectiveness [11]. 
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Similarly, [19] introduced a self-guided deep-learning 

technique for Magnetic Resonance Imaging (MRI) noise 

reduction. This technique combines deep learning with 

adaptive filters to improve image quality, demonstrating 

significant performance gains [19]. 

B. Image Noise Removal using  

1) Spatial filtering method 

a) Arithmetic Mean Filter (ArMF)  

Average Mean Filter (ArMF), is a fundamental 

technique in image denoising. This filter operates by 

replacing each pixel value with the average value of its 

neighboring pixels within a specified kernel or window. 

By averaging pixel values, the filter aims to reduce noise 

while preserving the general structure and features of the 

image. One of the primary advantages of the Arithmetic 

Mean Filter is its simplicity and computational efficiency, 

making it widely used in various denoising applications. 

However, while Arithmetic Mean Filter can effectively 

reduce noise, it may also blur the image and reduce 

sharpness, especially in areas with high frequency or 

intricate details. Additionally, this filter is sensitive to 

outliers and may not adequately handle impulsive noise, 

such as salt-and-pepper noise. Consequently, while the 

Arithmetic Mean Filter serves as a basic denoising 

approach, it is often combined with more sophisticated 

techniques or used as a pre-processing step in image 

enhancement pipelines to achieve better results. ArMF 

strives to discover an estimation that reduces the average 

squared difference between the noisy values and their 

corresponding estimates within the spatial domain. For the 

ArMF equation, it employs an equation from [1], as in 

Eq. (1). 

𝐹(𝑥, 𝑦) =
1

𝑚𝑛 
∑ 𝑔(𝑠, 𝑡)(𝑠,𝑡)∈𝑆𝑥𝑦

                   (1) 

where (x, y) are the coordinates of the pixel being 

processed, and F is the filter function applied at the 

coordinates (x, y). 1/mn is the normalization factor, where 

m and n are the dimensions of the applied filter. Sxy is a 

group of pixel coordinates within the neighborhood of (x, 

y) according to the filter size, and ∑(𝑠, 𝑡) ∈ 𝑆𝑥𝑦 denotes 

the summation operation for all pixel coordinates (s, t). 

The average filter efficiently reduces local fluctuations in 

the image. However, as a consequence, the resulting 

cleaned image might exhibit significant blurring. 

b) Wiener filtering  

This evaluation of error is expressed as [1] in Eq. (2). 

Where e2 is the Mean Square Error (MSE) that will be 

minimized in the Wiener Filtering process, while E 

represents the expectation indicating the average value of 

a random variable. f is the original pixel value (the 

undistorted original signal), and F is the pixel value after 

filtering (the filtered signal)  

 𝑒2 =  𝐸{(𝑓 − 𝐹)2}   (2) 

 

2) Non-linear spatial filter 

a) Median filter and Adaptive Median Filter (AMF) 

The Median Filter stands as a widely utilized order-

statistic filter in image processing. Order-statistic filters 

operate spatially, relying on the arrangement of pixels 

within the filter’s coverage area. At each point, the filter’s 

response is influenced by the pixel ranking outcome. By 

substituting the pixel value with the median of the 

surrounding gray levels, the Median Filter proves notably 

efficient, particularly when dealing with unipolar and 

bipolar impulse noise. However, the performance of the 

Median Filter will decrease with a high spatial density of 

impulse noise [20]. The AMF demonstrates robust 

performance even in scenarios with a high density of 

impulse noise. It functions within a rectangular window 

area contingent upon the distribution of grey-level values, 

dynamically adjusting the window size to accommodate 

variations in the image. 

C. Method Based on Domain Filtering Transformation 

In this research, this method is used to transform pixel 

intensity values into another transformation domain. The 

transformation domain will be chosen in such a way that 

noise and signal values can be separated as best as possible. 

Subsequently, filtering is performed on the transformed 

coefficients to obtain a sparse representation. Finally, the 

transformation is reversed to obtain the actual pixel values. 

1) Spatial frequency filtering and Anisotropic 

Diffusion Filtering (AnDF) 

Subsequently, a low-pass filter is employed to eliminate 

noise, with the cut-off frequency carefully selected to 

dissociate noise from the valuable signal. Low-pass 

filtering entails permitting low-frequency content to pass 

through while impeding high-frequency elements. The 

identification of low-frequency and high-frequency 

elements depends on the selected cut-off frequency. 

Normally, the low-frequency elements within the image 

are associated with uniform areas, whereas the high-

frequency elements pertain to characteristics such as edges 

and noise. Afterward, the transformed coefficients 

undergo an inverse Fourier transform to obtain the cleaned 

image in the spatial domain. However, a significant 

limitation of this filtering method arises from the 

dispersion of edge information across frequencies, 

creating difficulties in accurately discerning between 

edges and noise in the frequency spectrum, particularly 

when they share similar frequencies. Consequently, in the 

denoising process, this filtering approach often sacrifices 

edge information, resulting in the degradation of edge 

quality. AnDF [21–23] is used to clean the image while 

preserving edges. So, it is utilized to distribute the image 

uniformly across regions while constraining spreading in 

front of the edges, thus allowing better cleaning results. 

D. Non-Local Means (NLM) Algorithm 

NLM [24, 25], attempts to exploit redundancy in natural 

images. Natural images likely contain many examples of 

similar blocks. The NLM algorithm achieves pixel 

cleaning by averaging all pixel values in the image during 

smoothing, with a greater emphasis placed on pixels 
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sharing a similar neighborhood with the current pixel. 

Recent years have seen advancements in the traditional 

NLM algorithm. However, the original NLM’s 

effectiveness can be compromised if a pixel resides in 

either a smooth or rough region, depending on the window 

size applied [26]. When using a small window size in a 

smooth area, the cleaning might not be sufficiently 

effective, whereas employing a larger search window in a 

rough area may lead to loss of features. Hence, adapting 

the search window size to the context under consideration 

can potentially enhance cleaning effectiveness. This 

adaptive window size approach tailors the window size for 

each pixel, aiding in the preservation of enhancing image 

intricacies to yield marginally improved results in terms of 

Peak Signal-to-Noise Ratio (PSNR) compared to the 

original NLM, albeit at the expense of increased 

computational complexity. The initial NLM algorithm 

employs a Gaussian-weighted template with consistent 

coefficients across all adjacent pixels [26]. However, these 

fixed weights are susceptible to noise interference, 

impacting the cleaning performance during averaging. 

Adapting these weighted templates based on the noise 

level can potentially yield improved results. This method 

dynamically adjusts Gaussian weight coefficients using 

the Laplace operator. Initially, the noisy image is cleaned 

using traditional NLM, yielding the base image. If the 

noise persists at a point, the Laplace operator at that point 

exhibits high intensity. Subsequently, the neighbors are 

segregated into disjoint regions, and the weights of each 

region are computed using gradient and Laplace 

information. Ultimately, NLM is implemented utilizing 

this adjusted weighting factor matrix. This method not 

only exhibits improved visual results and higher PSNR 

values but also conserves more textures and edges when 

compared to the original NLM. However, it does require 

the initial use of traditional NLM. 

E. BM3D Filtering Based Denoising 

The BM3D algorithm consists of two steps and it will 

summarized into simpler steps as illustrated in Fig. 1. 

Eq. (3) describes the observation model in the BM3D 

algorithm, where the signal (observed image) z(x) is the 

sum of the original signal y(x) and noise 𝜂(𝑥) from the 

observed signal z(x). This results in the original signal y(x) 

being cleaner and of higher quality.  

 𝑧(𝑥) =  𝑦(𝑥) +  𝜂(𝑥)  (3) 

 

Fig. 1. Block diagram of the BM3D algorithm. 

 

1) Step 1 

The first step is to obtain the baseline image. In this 

process, block-wise estimation occurs, involving 

collaborative grouping and hard-thresholding. Grouping 

involves the search for blocks akin to the presently 

processed block, which are then aggregated to constitute a 

group. Subsequently, a 3D transformation is applied to this 

group, followed by hard thresholding on the 

transformation coefficients to mitigate noise. The 

transformation is then reversed to generate estimates for 

all grouped blocks, which are restored to their initial 

positions. Furthermore, aggregation is achieved by 

computing the baseline estimate for all pixels through a 

weighted average of all overlapping block estimates. 

Distance measurement d uses the following Eq. (4). For 

distance measurement d, it is done using Eq. (4), where RXR 

and ZX are the blocks being compared, while 𝑁1
ℎ𝑡  is the 

block size used in hard-thresholding. 

 𝑑_𝑛𝑜𝑖𝑠𝑦(𝑅𝑋𝑅 , 𝑍𝑋) =
||𝑍𝑋𝑅−𝑍𝑋||2

2

(𝑁1
ℎ𝑡)2  (4) 

BM3D creates a collection of comparable patches for 

the present processing patch using the subsequent equation. 

To form a set of similar patches 𝑆𝑥𝑅
ℎ𝑡 , it is calculated using 

Eq. (5), where 𝜏𝑚𝑎𝑥−𝑝𝑎𝑡𝑐ℎ
ℎ𝑡  is the maximum threshold for 

the patch.  

 𝑆𝑥𝑅
ℎ𝑡 = (

𝑥∈𝑋

𝑑(𝑍𝑥𝑅, 𝑍𝑥)≤𝜏𝑚𝑎𝑥−𝑝𝑎𝑡𝑐ℎ
ℎ𝑡 ) (5) 

For the inverse 3D transformation, calculate using 

Eq. (6), where γ is the function applied to the 
transformation result. 

 Υ
𝑆𝑥𝑅

ℎ𝑡 = 𝜏3𝐷(ℎ𝑡)−1
(γ (𝜏3𝐷ℎ𝑡  

(𝑍
𝑆𝑥𝑅

ℎ𝑡 ))) (6) 

In the aggregation stage to obtain the baseline estimates 

for each pixel, the considered weights as 𝑊𝑥𝑅
ℎ𝑡 in Eq. (7),  

σ is the noise deviation standard and   𝑁ℎ𝑎𝑟
𝑥𝑅  is a total 

block on the group.  

 𝑊𝑥𝑅
ℎ𝑡 = {

1

𝜎−2𝑁ℎ𝑎𝑟
𝑥𝑅 , 𝑖𝑓  𝑁ℎ𝑎𝑟

𝑥𝑅  ≥ 1

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} (7) 

For the baseline estimation at each pixel as Υ𝑏𝑎𝑠𝑖𝑐(𝑥), 

this calculation follows Eq. (8), where 𝑋𝑚 ∈ 𝑆𝑥𝑅
ℎ𝑡  is a group 

of patch similar to the patch being processed, and,  𝑋𝑥𝑚

(𝑥)
 is 

an initial patch from xm. 

 Υ𝑏𝑎𝑠𝑖𝑐(𝑥) =
∑ ∑ 𝑆𝑥𝑅

ℎ𝑡 𝑊𝑥𝑅
ℎ𝑡Υ 𝑥𝑚

(ℎ𝑡,𝑥𝑅)
𝑋𝑚∈𝑋𝑅 ∈𝑋 

∑ ∑ 𝑆𝑥𝑅
ℎ𝑡 𝑊𝑥𝑅

ℎ𝑡𝑋𝑥𝑚
(𝑥)

 

 

𝑋𝑚∈𝑋𝑅 ∈𝑋 

, ∀𝑥 ∈ 𝑋   (8) 
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2) Step 2  

After completing the first step, the baseline estimates for 

all pixels have been obtained, having baseline estimates for 

all pixels, and the image for the initial input has been 

acquired. The second step is the final estimation, where the 

baseline image is used for collaborative grouping and 

Wiener filtering. This process is similar to the first step but 

involves two groups formed from locations of blocks 

similar to the block being processed, one obtained from the 

original image and one with noise. Finally, the projected 

blocks are returned to their original placements, and the 

process of combining them is carried out by calculating the 

ultimate estimations for every pixel via averaging. 

Collaborative grouping and filtering are performed using 

Eq. (9). 𝑆𝑥𝑅
𝑤𝑖𝑒 is group patch processing by Wiener, 

𝛶𝑥𝑅
𝑏𝑎𝑠𝑖𝑐and 𝛶𝑥

𝑏𝑎𝑠𝑖𝑐 is xR and xpixels estimation. 𝑁1
𝑤𝑖𝑒 is the 

block size that is used in Wiener grouping, and 

𝜏𝑚𝑎𝑥−𝑝𝑎𝑡𝑐ℎ
𝑤𝑖𝑒  is the maximum threshold for the patch in the 

Wiener grouping. 

 𝑆𝑥𝑅
𝑤𝑖𝑒 =

||Υ𝑥𝑅
𝑏𝑎𝑠𝑖𝑐−Υ𝑥

𝑏𝑎𝑠𝑖𝑐||2
2

(𝑁1
𝑤𝑖𝑒)2 < 𝜏𝑚𝑎𝑥−𝑝𝑎𝑡𝑐ℎ

𝑤𝑖𝑒   ∀𝑥 ∈ 𝑋 (9) 

For the Wiener shrinkage coefficients using Eq. (10), 

where 𝑊
𝑆𝑥𝑅

𝑤𝑖𝑒𝑛 is the Wiener shrinkage coefficient for the 

set 𝑁𝑥𝑅
𝑤𝑖𝑒 , and 𝜏3𝐷

𝑤𝑖𝑒 is the 3D transform used in Wiener 

grouping, and finally, σ2 is noise variance. 

 𝑊
(𝑆𝑥𝑅

𝑤𝑖𝑒𝑛)
=

|𝜏3𝐷
𝑤𝑖𝑒(Υ

(𝑆𝑥𝑅)
𝑏𝑎𝑠𝑖𝑐 )|2 

|𝜏3𝐷
𝑤𝑖𝑒(Υ

(𝑆𝑥𝑅)
𝑏𝑎𝑠𝑖𝑐 )|2+𝜎2

 (10) 

To obtain the actual coefficients from the modified 

coefficients, inverse transformation is performed using the 

following Eq. (11), Υ
𝑆𝑥𝑅

𝑤𝑖𝑒
𝑤𝑖𝑒  is the group of block-wise 

estimates. 

 Υ
(𝑆𝑥𝑅

𝑤𝑖𝑒)

𝑤𝑖𝑒 = 𝜏3𝐷
(𝑤𝑖𝑒)−1

(𝑊
(𝑆𝑥𝑅

𝑤𝑖𝑒)
× 𝜏3𝐷

𝑤𝑖𝑒 (𝑍
(𝑆𝑥𝑅

𝑤𝑖𝑒) 
)) (11) 

In the aggregation of the second step, the weights to be 

used are calculated using Eq. (12), 𝑊
𝑆𝑥𝑅

𝑤𝑖𝑒| |2
−2 is the best 

norm of the Wiener shrinkage coefficient. 

 𝑊𝑥𝑅
𝑤𝑖𝑒 = 𝜎2 × ||𝑊

(𝑆𝑥𝑅
𝑤𝑖𝑒)

| |2
−2 (12) 

F. PSNR 

While BM3D generally outperforms many denoising 

methods documented in the literature across various image 

scenarios, recent years have witnessed notable 

advancements in this field. Block Matching 3D (BM3D) 

has involved a series of significant innovations since its 

introduction in 2007 [19]. The original BM3D algorithm, 

which utilizes a block-matching and collaborative 

approach, has laid the groundwork for further development 

in image-denoising techniques. Since then, efforts have 

been made to improve the computational efficiency of 

BM3D, expand its capability to handle various types of 

noise encountered in digital images, and integrate deep 

learning techniques to enhance its performance [8, 19, 27, 

28]. Some researchers aim to make BM3D more robust 

against variations in image content while providing user-

friendly implementations for easy use by various users. 

With the continuous advancement of technology and 

research, BM3D remains a major focus in improving the 

quality of image denoising and continues to undergo 

innovation to meet new challenges and demands in this 

domain. 

The ongoing innovation of the Block Matching 3D 

(BM3D) filter continues to enhance its performance in 

image-denoising tasks. Several notable areas of 

improvement include algorithm efficiency, noise reduction 

quality, adaptability to various types of noise, robustness 

to image variations, integration with deep learning, and 

user-friendly implementation [29, 30]. Efforts have been 

made to optimize the computational efficiency of BM3D, 

enabling faster processing without sacrificing the quality 

of denoising results. Many researchers are working to 

refine the denoising capabilities of BM3D to achieve better 

noise reduction while preserving image details and 

textures [27, 31]. BM3D has been adapted and optimized 

to handle various types of noise encountered in real-world 

scenarios, such as Gaussian noise, salt-and-pepper noise, 

or mixed noise types [30, 32]. 

Improvements aim to make BM3D more robust against 

variations in image content, resolution, and characteristics, 

ensuring consistent denoising performance across 

different types of images. Recent advancements have 

explored the integration of deep learning techniques with 

BM3D to further enhance its denoising capabilities. 

Efforts are made to provide user-friendly implementations 

of BM3D, offering easy-to-use software packages or 

libraries that allow researchers and practitioners to utilize 

the algorithm efficiently without requiring extensive 

expertise in image processing. Innovations in BM3D 

filtering also result in an improvement in the PSNR value. 

PSNR is a metric used to measure the quality of image 

restoration after denoising processes. A higher PSNR 

value indicates fewer distortions or errors occurring in the 

restoration process, thus indicating better restoration 

quality. Therefore, in the context of BM3D, improvements 

leading to an increase in PSNR values suggest that the 

denoising algorithm has effectively reduced noise without 

sacrificing important details in the image. Thus, in the 

development and improvement of BM3D, increasing 

PSNR is often considered an indicator of success in 

enhancing denoising quality. 

III. PROPOSED METHODS 

A. 3D Processing in BM3D 

Image processing in Three Dimensions (3D) is one of 

the crucial aspects in the development of modern image 

processing technology. One technique that has 

significantly improved performance in 3D image 

processing is the BM3D algorithm. BM3D is an innovative 

approach to addressing image processing problems, 
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particularly in the contexts of medical imaging, video 

processing, and image compression. By employing 

collaborative approaches and block processing, BM3D 

effectively reduces noise or disturbances present in 3D 

images, enabling clearer and more accurate image 

restoration. In the performance of BM3D, the utilization of 

3D blocks within the image is crucial for the BM3D 

algorithm as it facilitates the identification of recurring 

patterns, thereby enhancing its ability to effectively 

remove noise. Additionally, BM3D can model the image 

structure more accurately, allowing the algorithm to 

distinguish between the original signal and noise, resulting 

in better denoising. This algorithm relies on two forms of 

correlation (intra-patch and inter-patch). To utilize both 

correlations, BM3D calculates the distance between each 

pair of patches nearby to find similar patches. Next, BM3D 

gathers a series of similar patches using a formula. The 

algorithm then combines all these patches with the 

currently processed patch, forming a 3D data structure 

called a group. With the formation of the 3D data structure, 

separate (2D + 1D) transformation selection is suitable for 

BM3D, allowing the selected transformation to leverage 

both intra-patch and inter-patch correlations. 

B. Proposed Method 

However, the algorithm’s effectiveness heavily relies 

on the availability of a sufficient number of analogous 

patches. If BM3D cannot identify an ample number of 

similar patches, its performance will be constrained. For 

instance, if BM3D cannot locate eight or more akin 

patches for a given processed patch, the exploitation of 

inter-patch correlation will be suboptimal. In such 

scenarios, applying 3D transformation is unlikely to yield 

accurate estimations. Therefore, we suggest that if BM3D 

faces challenges in identifying eight or more analogous 

patches for a processed patch, it is preferable to employ 2D 

transformation rather than 3D. More precisely, Discrete 

Wavelet Transform 2D can be applied to the processed 

patch to achieve better results. In this study, several steps 

will be used to manage patches in the denoising process. 

First, the distance d from each reference patch to the patch 

being processed will be measured using Eq. (4). Then, a 

set of patches considered similar to each patch being 

processed will be formed. A reference patch will be 

deemed analogous to the patch being processed if 

“distance d” is lower than a predetermined threshold. 

Furthermore, the count of patches regarded as analogous 

to each patch being processed is also established. If the 

number of patches considered similar is <8, then a 3D data 

structure will not be created for those patches. Instead, 2D 

transformations will be applied to these patches. On the 

other hand, if there are eight or more patches considered 

similar, a 3D data structure will be created by arranging 

the similar patches with the patch being processed, and 

then a 3D transformation will be performed following the 

BM3D algorithm. With this approach, the denoising 

results are expected to be significantly improved in cases 

where patches do not have sufficient similarity. In this 

context, Zx will linked as a patch, 𝜏2𝐷
ℎ𝑡  as 2D 

transformation2D, and Υ𝑥
ℎ𝑡is the estimates obtained after 

the 2D transformation, so this procedure will use the 

following Eq. (13). 

 Υ𝑆𝑥𝑅
ℎ𝑡 = 𝜏2𝐷

ℎ𝑡 (𝑍𝑥)  (13) 

Next, a threshold will be applied to adjusted coefficients 

for 2D and 3D patches, and inverse transformation will be 

performed to obtain the values of the estimates. All 

estimates will be combined and calculated using Eq. (8). 

Upon completion of the initial step, a denoised image will 

be generated. Subsequently, the final image designated for 

experimentation will undergo the second phase of BM3D 

processing, culminating in the acquisition of the image for 

the ultimate denoising iteration. The steps performed for 

the experiments in this study are shown in Fig. 2. First, the 

noisy image will be taken, and then the distance d will be 

measured to determine the number of akin patches within 

each picture. If the number of patches in the image is ≤8, 

then a 2D transformation will be applied to the patch being 

processed, followed by thresholding on the modified 

coefficients and performing the inverse 2D transformation. 

However, if the count of analogous patches is >8, then 

transformation will be applied to the group, thresholding 

will be applied to the coefficients and inverse 3D 

transformation will be performed. After the transformation 

step, all estimates will be combined, including the 

calculation of the basic estimate and the estimate for each 

pixel. Finally, the second step of BM3D will be performed 

to obtain the final denoised image. 

The proposed method integrates adaptive 2D and 3D 

transformations within the BM3D algorithm. The detailed 

steps are outlined in the following pseudocode in 

Algorithm 1: 

 

Algorithm 1: BM3D with Adaptive 2D and 3D 

Transformations 

Input: Noisy Image I, Threshold T 

1. Initialize denoised image I’ as a copy of I 

2. For each block B in image I: 

a. Find similar blocks S using block-matching 

b. If |S| < T: 

i. Apply 2D transformation to B 

ii. Perform hard thresholding on 2D coefficients 

iii. Inverse 2D transformation to obtain denoised 

block B’ 

c. Else 

i. Group B with similar blocks to form a 3D array 

ii. Apply 3D transformation to the 3D array 

iii. Perform hard thresholding on 3D coefficients 

iv. Inverse 3D transformation to obtain denoised 

block B’ 

d. Aggregate B’ into denoised image I’ 

3. Perform a second pass of BM3D processing on I’: 

a. Use the denoised image I’ from the first pass as the 

input 

b. Repeat steps 2a to 2d using Wiener filtering instead of 

hard thresholding 

4. Return the denoised image I’ 
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Fig. 2. The proposed model. 

C. Dataset 

The dataset used in this study is the Standard Test Image 

dataset from Kaggle (Standard Test Image) [33]. BM3D 

performs better when the input images are textured, as the 

algorithm can find many similar patches, facilitating 

collaborative filtering, for example, IMAGE-2 from the 

dataset used in this study (see Fig. 3). Conversely, when 

the images lack adequately similar patterns, BM3D’s 

effectiveness diminishes. Hence, we’ve opted for this 

image dataset, encompassing both textured and non-

textured images. 

 

 

Fig. 3. Dataset of images selected [33] and used for experiments  

in C1 and C2. 

D. Evaluation Metrics Performance 

Assessing the effectiveness of the employed 

methodology for experiments compared to BM3D’s 

performance, this research considers using PSNR as the 

performance metric. Additionally, the results were 

objectively evaluated and contrasted with outcomes 

obtained through the BM3D approach. PSNR is 

represented as follows: 

𝑃𝑆𝑁𝑅 = 10 × log 10 (
𝑀𝐴𝑋1

2

𝑀𝑆𝐸
)  

where 𝑀𝑆𝐸 =
1

𝑀×𝑁
∑ ∑ (𝑦(𝑖, 𝑗)𝑌(𝑖, 𝑗))2𝑁

𝑗=1
𝑀
𝑖=1                 (14) 

IV. EXPERIMENT RESULT 

The experiments in this study are divided into two parts, 

namely C1 and C2. In C1, the experiment is conducted 

when the count of analogous patches detected is ≤2 for one 

patch, so only 2D transformations will be performed. 

Conversely, in C2, if the count of analogous patches 

detected is ≤4 for one patch, 2D transformation will be 

carried out, and vice versa. However, if more than 4 similar 

patches are found, 3D processing will be performed. 

To further validate the effectiveness of the proposed 

method, additional experiments were conducted using 

various types of noise. The types of noise considered were 

Gaussian noise, Salt-and-Pepper noise, and Speckle noise. 

A. Comparative Analysis 

1) Gaussian noise 

Gaussian noise is one of the most common types of 

noise found in digital images, often caused by camera 

sensors. This noise distribution is normal, affecting each 

pixel independently. Testing denoising algorithms against 

Gaussian noise is important because this type of noise 

frequently appears in many practical applications such as 

photography and medical imaging. Based on the findings 

presented in Tables I and II, it is evident that the achieved 

PSNR levels provide superior values at all noise levels. 

Notably, BM3D shows a significant decline in noise 

removal effectiveness for noise levels equal to or 

exceeding 40. This decline can be attributed to BM3D’s 

difficulty in identifying analogous patches under high 

noise conditions, as confirmed by previous studies. 

Consequently, BM3D’s inability to leverage intra-patch 

correlation becomes apparent in such scenarios. 

Based on the findings presented in Tables I and II, it is 

evident that the attainment of PSNR levels yields superior 

values across all noise levels. Notably, BM3D 

demonstrates a significant decrease in its noise removal 

efficacy [19] for noise levels equal to or exceeding 40. This 

decline can be attributed to BM3D’s difficulty in 

identifying analogous patches under high noise conditions, 

as corroborated by prior research [19]. Consequently, 

BM3D’s inability to exploit intra-patch correlation 

becomes apparent in such scenarios [19]. For denoising 

these patches, it does not rely on similar patches due to 

their potentially significant dissimilarity. Therefore, noise 

removal is based solely on inter-patch correlation, 

resulting in superior denoising performance compared to 

the original BM3D method. Although there is a significant 

improvement at all noise levels, it is found that there is a 

slight increase in the performance of denoising in 

conditions of elevated noise levels. 
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TABLE I. EVALUATION OF PSNR BETWEEN BM3D AND EXPERIMENTAL METHOD IN C1 

σ Items IMAGE 1 IMAGE 2 IMAGE 3 IMAGE 4 IMAGE 5 IMAGE 6 Average 

10 

BM3D 35.16 33.34 34.80 32.29 33.32 30.35 33.21 

Exp 35.46 33.88 35.18 32.79 34.00 31.04 33.73 

Imp 0.39 0.77 0.59 0.63 0.47 0.78 0.61 

20 

BM3D 31.17 29.44 30.84 28.81 29.61 26.60 29.41 

Exp 31.66 29.99 31.41 29.26 30.13 27.21 29.94 

Imp 0.58 0.64 0.66 0.54 0.61 0.70 0.62 

30 

BM3D 29.04 27.03 28.68 26.89 27.43 25.02 27.35 

Exp 29.70 27.97 29.16 27.38 28.11 25.32 27.94 

Imp 0.75 1.03 0.57 0.58 0.77 0.39 0.68 

40 

BM3D 27.54 25.46 26.92 25.64 25.93 24.01 25.92 

Exp 28.05 26.35 27.57 26.06 26.57 24.36 26.49 

Imp 0.60 0.98 0.74 0.51 0.73 0.44 0.67 

50 

BM3D 26.37 24.07 25.69 24.61 24.80 23.43 24.83 

Exp 26.93 25.09 26.13 25.00 25.55 23.68 25.40 

Imp 0.65 1.11 0.53 0.48 0.84 0.34 0.66 

60 

BM3D 25.18 23.09 24.59 23.79 23.90 22.96 23.92 

Exp 26.00 24.19 25.33 24.38 24.63 23.12 24.61 

Imp 0.91 1.19 0.83 0.68 0.82 0.25 0.78 

70 

BM3D 24.56 22.24 23.66 23.23 23.35 22.56 23.27 

Exp 25.17 23.27 24.59 23.91 23.92 22.74 23.93 

Imp 0.70 1.12 1.02 0.77 0.66 0.27 0.76 

80 

BM3D 24.10 21.74 23.20 22.63 22.71 22.15 22.76 

Exp 24.73 22.45 23.91 23.31 23.43 22.47 23.38 

Imp 0.72 0.80 0.80 0.77 0.81 0.41 0.72 

90 

BM3D 23.20 21.14 22.82 22.19 22.39 21.82 22.26 

Exp 24.02 21.97 23.51 22.60 23.01 22.20 22.89 

Imp 0.91 0.92 0.78 0.50 0.71 0.47 0.72 

100 

BM3D 22.69 20.69 21.84 21.61 21.69 21.55 21.68 

Exp 23.59 21.38 22.70 22.47 22.54 21.99 22.45 

Imp 0.99 0.78 0.95 0.95 0.94 0.53 0.86 

Note: Exp: PSNR of the processed images generated by the experimental approach; Imp: Variation 

in PSNR between the processed images from the experimental approach and those from the BM3D 

application, measured in decibels (dB). 

TABLE II. EVALUATION OF PSNR BETWEEN BM3D AND EXPERIMENTAL METHOD IN C2 

σ Items IMAGE 1 IMAGE 5 IMAGE 4 IMAGE 2 IMAGE 3 IMAGE 6 Average 

10 

BM3D 35.16 33.32 33.29 33.34 34.80 30.35 33.38 

Exp 35.47 34.03 32.81 33.84 35.09 31.03 33.71 

Imp 0.40 0.80 0.61 0.59 0.38 0.77 0.59 

20 

BM3D 31.17 29.61 28.81 29.44 30.84 26.60 29.41 

Exp 31.78 30.12 29.27 30.07 31.48 27.07 29.97 

Imp 0.70 0.60 0.55 0.72 0.73 0.56 0.64 

30 

BM3D 29.04 27.43 26.89 27.03 28.68 25.02 27.35 

Exp 29.53 28.04 27.44 28.05 29.21 25.33 27.93 

Imp 0.58 0.70 0.64 1.11 0.62 0.40 0.68 

40 

BM3D 27.54 25.93 25.64 25.46 26.92 24.01 25.92 

Exp 27.99 26.70 26.02 26.43 27.51 24.36 26.50 

Imp 0.54 0.86 0.47 1.06 0.68 0.44 0.68 

50 

BM3D 26.37 24.80 24.61 24.07 25.69 23.43 24.83 

Exp 27.03 25.67 25.21 24.93 26.21 23.59 25.44 

Imp 0.75 0.96 0.69 0.95 0.61 0.25 0.70 

60 

BM3D 25.18 23.90 23.79 23.09 24.59 22.96 23.92 

Exp 25.95 24.57 24.40 24.09 25.38 23.17 24.59 

Imp 0.86 0.82 0.70 1.09 0.88 0.30 0.78 

70 

BM3D 24.56 23.35 23.23 22.24 23.66 22.56 23.27 

Exp 25.26 23.91 23.79 23.25 24.53 22.79 23.92 

Imp 0.79 0.65 0.65 1.10 0.96 0.32 0.75 

80 

BM3D 24.10 22.71 22.63 21.74 23.20 22.15 22.76 

Exp 24.55 23.31 23.23 22.61 23.87 22.47 23.34 

Imp 0.54 0.69 0.69 0.96 0.76 0.41 0.68 

90 

BM3D 23.20 22.39 22.19 21.14 22.82 21.82 22.26 

Exp 24.18 22.99 22.86 21.91 23.24 22.13 22.89 

Imp 1.07 0.69 0.76 0.86 0.51 0.40 0.72 

100 

BM3D 22.69 21.69 21.61 20.69 21.84 21.55 21.68 

Exp 23.54 22.53 22.20 21.48 22.58 21.92 22.38 

Imp 0.94 0.93 0.68 0.88 0.83 0.46 0.79 

Note: Exp: PSNR of the processed images generated by the experimental approach; Imp: Variation 

in PSNR between the processed images from the experimental approach and those from the BM3D 

application, measured in decibels (dB). 
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2) Salt-and-pepper noise 

Salt-and-pepper noise appears as black-and-white 

specks on an image and is usually caused by interference 

in data transmission or sensor errors. Testing algorithms 

against Salt-and-Pepper noise is important to ensure 

effectiveness in removing sharp impulsive noise without 

sacrificing important details. Experimental results show 

that the proposed method outperforms the original BM3D 

algorithm, especially at high noise levels. Tables III and 

IV summarize the PSNR values for Salt-and-Pepper noise. 

The proposed method achieves better denoising results by 

dynamically applying 2D transformation when not enough 

similar patches are found. 

From Tables IV and V, it can be observed that the tested 

method yields shorter execution times compared to BM3D. 

On average, the method tested in C1 results in a reduction 

in execution time by 0.99%, and in C2, it results in a 

reduction in execution time by 1.08% compared to the 

original BM3D. Although the reduction is not significant, 

it indicates that the method tested in C1 achieves better 

noise removal performance than C2, especially at high 

noise levels. In the method tested in C2, if patches with ≤4 

similar patches are found, 2D processing will be performed 

on those patches. This approach is anticipated to deliver 

superior noise elimination results compared to C1. 

Nevertheless, in scenarios where four analogous patches 

are identified, it may be advantageous to employ 3D 

processing instead of 2D processing, particularly at lower 

noise levels. 

TABLE III.  COMPARISON OF PSNR-DB BETWEEN BM3D AND THE 

METHOD UNDER SECURITY IN C1 

σ 
BM3D Avg. 

PSNR 

Exp. Avg. 

PSNR in C1 
Imp. in C1 

Exp. Avg. 

PSNR in C2 
Imp. in C2 

10 33.04 33.58 0.63 33.59 0.64 

20 29.3 29.83 0.62 29.86 0.65 

30 27.26 27.84 0.67 27.85 0.68 

40 25.87 26.42 0.64 26.44 0.66 

50 24.81 25.36 0.64 25.38 0.66 

60 23.94 24.59 0.74 24.59 0.74 

70 23.28 23.92 0.73 23.91 0.72 

80 22.77 23.4 0.72 23.37 0.69 

90 22.28 22.9 0.71 22.91 0.72 

100 21.71 22.48 0.86 22.43 0.81 

 

TABLE IV.  THE DIFFERENCE IN EXECUTION TIME BETWEEN BM3D AND THE METHOD TESTED IN SECOND AT C1 

σ Items IMAGE 1 IMAGE 5 IMAGE 4 IMAGE 2 IMAGE 3 IMAGE 6 Average 

10 

BM3D 44.71 51.96 57.97 48.42 57.80 56.18 52.84 

Imp 0.39 0.89 0.72 0.53 0.69 0.68 0.70 

Exp 44.41 51,16 57.34 47.98 57.20 55.59 52.28 

20 

BM3D 44.64 59,41 47,01 48,20 56,33 51,63 51,20 

Exp 44.28 59.33 46.85 47.84 55.81 51.25 50.89 

Imp 0.45 0.17 0.25 0.45 0.61 0.47 0.40 

30 

BM3D 45.26 61.24 48.66 47.85 62.40 58.39 53.97 

Exp 44.61 60.86 48.19 46.69 62.54 58.21 53.52 

Imp 0.74 0.47 0.56 1.25 0.23 0.27 0.59 

40 

BM3D 56.35 61.27 55.57 62.28 62.01 58.88 59.39 

Exp 55.83 60.83 55.11 61.27 60.83 58.76 58.77 

Imp 0.61 0.53 0.55 1.10 1.27 0.21 0.71 

50 

BM3D 57.07 60.65 53.67 59.59 58.83 56.38 57.70 

Exp 57.84 59.55 53.58 58.40 58.14 56.16 57.28 

Imp 0.86 1.19 0.18 1.28 0.78 0.31 0.77 

60 

BM3D 53.79 56.95 55.82 54.60 52.22 58.59 55.33 

Exp 53.04 56.26 55.48 53.24 51.44 58.51 54.66 

Imp 0.84 0.78 0.43 1.45 0.87 0.17 0.76 

70 

BM3D 65.07 59.20 52.25 54.38 51.93 58.64 56.91 

Exp 64.17 58.75 51.78 53.34 50.87 58.65 56.26 

Imp 0.99 0.54 0.56 1.13 1.15 0.10 0.75 

80 

BM3D 65.20 56.88 50.81 57.25 53.38 54.41 56.32 

Exp 64.76 55.20 50.41 56.77 52.52 54.14 55.63 

Imp 0.53 1.77 0.49 0.57 0.95 0.36 0.78 

90 

BM3D 52.02 57.32 51.08 53.33 57.19 50.79 53.62 

Exp 51.17 56.87 50.56 52.65 56.58 50.51 53.06 

Imp 0.94 0.54 0.61 0.77 0.70 0.37 0.66 

100 

BM3D 50.26 57.09 48.81 62.51 51.46 58.27 54.73 

Exp 49.64 56.36 48.18 61.74 50.86 57.73 54.09 

Imp 0.71 0.82 0.72 0.86 0.69 0.63 0.74 

Note: Exp: Processing time (seconds) of cleaned images produced by the experimental method in 

C2; Imp: Difference in processing time (seconds) between cleansed images yielded by the 

experimental approach and the BM3D algorithm. 

 

3) Speckle noise 

Speckle noise often appears in images produced by 
coherent imaging systems such as medical ultrasound and 
radar, caused by the random interference of reflected 
waves. Testing denoising algorithms against speckle noise 
is important for applications in the medical field and 

remote sensing, where high-quality images are crucial for 
accurate analysis and diagnosis. 

Similar trends were observed with speckle noise, as 
shown in Tables V and IV. The adaptive approach 
improves denoisi1ng performance by considering the 
availability of similar blocks in the image. The proposed 
method shows an increase in PSNR values compared to the 
original BM3D algorithm. 
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TABLE V.   THE DIFFERENCE IN EXECUTION TIME BETWEEN BM3D AND THE METHOD TESFTED IN SECOND AT C2 

σ Items IMAGE 1 IMAGE 2 IMAGE 3 IMAGE 4 IMAGE 5 IMAGE 6 Average 

10 

BM3D 44.71 48.42 57.8 57.97 56.18 51.96 52.84 

Exp 44.3 47.97 57.2 57.31 55.57 51.14 52.25 

Imp 0.5 0.54 0.69 0.75 0.7 0.91 0.68 

20 

BM3D 44.64 48.2 56.33 47.01 51.63 59.41 51.20 

Exp 44.19 47.84 55.77 46.79 51.09 59.28 50.83 

Imp 0.54 0.45 0.65 0.31 0.63 0.22 0.47 

30 

BM3D 45.26 47.85 62.4 48.66 58.39 61.24 53.97 

Exp 44.6 46.64 62.36 48.18 58.17 60.86 53.47 

Imp 0.75 1.3 0.13 0.57 0.31 0.47 0.59 

40 

BM3D 56.35 62.28 62.01 55.57 58.88 61.27 59.39 

Exp 55.64 61.26 60.78 55.1 58.66 60.83 58.71 

Imp 0.8 1.11 1.32 0.56 0.31 0.53 0.77 

50 

BM3D 57.07 59.59 58.83 53.67 56.38 60.65 57.70 

Exp 57.83 58.39 58.13 53.5 56.08 59.55 57.25 

Imp 0.85 1.29 0.79 0.26 0.39 1.19 0.80 

60 

BM3D 53.79 54.6 52.22 55.82 58.59 56.95 55.33 

Exp 53 53.19 51.43 55.38 58.52 56.23 54.63 

Imp 0.88 1.5 0.88 0.53 0.16 0.81 0.79 

70 

BM3D 65.07 54.38 51.93 52.25 58.64 59.2 56.91 

Exp 64.17 53.27 50.79 51.71 58.55 58.72 56.20 

Imp 0.99 1.2 1.23 0.63 0.18 0.57 0.80 

80 

BM3D 65.2 57,25 53.38 50.81 54.41 56.88 56.32 

Exp 64.73 56,75 52.51 50.31 54.07 55.13 55.58 

Imp 0.56 0,59 0.96 0.59 0.43 1.84 0.83 

90 

BM3D 52.02 53.33 57.19 51.08 50.79 57.32 53.62 

Exp 51.12 52.57 56.51 50.5 50.5 56.81 53.00 

Imp 0.99 0.85 0.77 0.67 0.38 0.6 0.71 

100 

BM3D 50.26 62.51 51.46 48.81 58.27 57.09 54.73 

Exp 49.59 61.68 50.8 48.17 57.69 56,34 54.05 

Imp 0.76 0.92 0.75 0.73 0.67 0.84 0.78 

Note: Exp: Processing time (seconds) of cleaned images produced by the experimental method in 

C2; Imp: Difference in processing time (seconds) between cleansed images yielded by the 

experimental approach and the BM3D algorithm. 

TABLE VI.   PERCENTAGE OF PATCHES EXHIBITING A RESEMBLANCE WITH 2 SIMILAR PATCHES 

σ IMAGE 1 IMAGE 2 IMAGE 3 IMAGE 4 IMAGE 5 IMAGE 6 Average 

10 20.04 37.04 25.21 37.42 55.83 31.25 34.47 

20 17.5 36.39 24.02 31.26 41.15 26.26 29.43 

30 17.81 37.4 25.77 29 28.79 25.92 27.45 

40 16.18 33.94 24.08 22.62 15.2 26.61 23.11 

50 19.39 44.16 30.05 25.56 19.14 27.79 27.68 

60 23.76 53.34 38.03 36.33 29.53 34.87 35.98 

70 35.93 63.56 46.05 47.37 47.43 45.14 47.58 

80 52.2 73.58 56.16 63.26 60.96 54.51 60.11 

90 66.84 78.13 73.26 63.94 69.01 73.57 70.79 

100 75.06 87.43 77.04 79.35 78.25 79.71 79.47 

TABLE VII.    PERCENTAGE OF PATCHES THAT HAVE 2 OR 4 SIMILAR PATCHES 

σ IMAGE 1 IMAGE 2 IMAGE 3 IMAGE 4 IMAGE 5 IMAGE 6 Average 

10 20.74 37.25 25.33 37.93 55.84 31.45 34.76 

20 17.64 36.75 24.21 31.31 41.5 26.48 29.65 

30 18.27 37.42 25.97 29.04 29 26.34 27.67 

40 16.25 34.25 24.32 22.89 15.24 26.87 23.30 

50 19.88 44.71 30.5 26.26 19.51 28.27 28.19 

60 24.26 53.74 38.43 36.92 29.72 35.44 36.42 

70 36.15 63.92 46.41 47.77 47.79 45.42 47.91 

80 52.48 73.74 56.48 63.51 61.38 54.96 60.43 

90 67.01 78.48 73.69 64.16 67.24 73.71 70.72 

100 75.4 87.85 77.4 79.83 78.35 80.06 79.82 

The percentage of patches that have 2 similar patches, 

can be seen in Table VI, and conversely, the percentage of 

patches that have 2 or 4 similar patches can be seen in 

Table VII. From both tables, it can be concluded that the 

number of patches for higher noise levels also has a higher 

percentage. This is evidenced by the increasing Euclidean 

distance at elevated noise levels, rendering the 

identification of analogous patches challenging. 

B. Visual Evaluation Analysis 

Fig. 4 illustrates a visual contrast between the noise 
filtering efficacy of experimental method C1 and the 
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filtering performance of the conventional BM3D 
technique. Compared to Table VI, the cleaned images by 
BM3D and the cleaned images by experimental method C1 
exhibit a significant difference, where the proposed 
experimental method achieves better visual performance 
compared to the original BM3D. In Fig. 4, several parts 
indicate that the proposed experimental method 
outperforms the original BM3D visually, as shown in the 
zoomed-in images (Fig. 4). The identical inference holds 
for Figs. 5 and 6 when juxtaposing the resultant images 
generated via the conventional BM3D approach and the 
novel method proposed in C2.  

The findings from this study indicate that the proposed 

adaptive approach to the BM3D image denoising 

algorithm can significantly enhance denoising 

performance, especially at high noise levels. Experimental 

results show that applying 2D transformations to blocks 

that do not have enough similar blocks can yield better 

denoising results compared to universally applying 3D 

transformations, as in conventional BM3D approaches. 

This aligns with findings from the study [29], which stated 

that modifications to the BM3D algorithm can improve 

denoising efficiency. The study also shows that lower 

computation times can be achieved with the proposed 

approach, which adaptively combines 2D and 3D 

transformations. This contributes further to the 

development of more efficient image-denoising 

techniques. These results support the research by  

Yahya et al. [27], which developed an adaptive filter-based 

BM3D algorithm to enhance denoising quality with higher 

computational efficiency. 

In the context of high noise, conventional BM3D faces 

difficulties in finding similar blocks, making the 

exploitation of intra-patch correlation less optimal. This 

was also observed by Dabov et al. [19], who showed that 

BM3D performance decreases at high noise levels due to 

limitations in identifying similar blocks. This study 

reinforces those findings and demonstrates that applying 

2D transformations to blocks that are not sufficiently 

similar can overcome these limitations and provide better 

denoising results. Additionally, visual analysis results 

show that the proposed experimental approach yields 

better visual quality compared to conventional BM3D. 

These findings are relevant to the research by Ma [29], 

which also found improved visual quality with a modified 

BM3D approach. 

 

Fig. 4. Visual results obtained from experiments for the IMAGE-1 dataset 

(the top row shows the original experimental results while the bottom row 

is a zoom-in of the top row images). Image A (Original dataset used), B 

(corrupted by Gaussian noise) lv. 30, C (Cleaned result) using BM3D, 

and D (Cleaned result) using experimental method C2. 

 

Fig. 5. Visual results obtained from experiments for the IMAGE-4 dataset 

(the top row shows the original experimental results while the bottom row 

is a zoom-in of the top row images). Image A (Original dataset used), B 

(corrupted by Gaussian noise) lv. 10, C (Cleaned result) using BM3D, 

and D (Cleaned result) using experimental method C1. 

 

Fig. 6. Visual results obtained from experiments for the IMAGE-2 dataset 

(the top row shows the original experimental results while the bottom row 

is a zoom-in of the top row images). Image A (Original dataset used), B 

(corrupted by Gaussian noise) lv. 60, C (Cleaned result using BM3D), 

and D (Cleaned result using experimental method C1. 

V. CONCLUSION 

The results of this research indicate that the adaptively 

proposed approach in the BM3D image denoising 

algorithm can significantly improve denoising 

performance. Experimental results show that performing 

2D transformations on blocks that do not have sufficiently 

similar blocks, instead of 3D transformations, can produce 

better denoising results, especially at high levels of noise. 

This suggests that considering the availability of similar 

blocks in the image when selecting the type of 

transformation can provide more optimal results in the 

denoising process. Additionally, this research also 

successfully demonstrates that the proposed method can 

achieve lower computational time compared to 

conventional approaches that use 3D transformations for 

all image blocks. This indicates that the adaptive use of 2D 

and 3D transformations not only improves the quality of 

denoising results but also the efficiency in image 

processing. Thus, this research contributes to developing 

more effective and efficient image-denoising techniques. 

The results of this research reaffirm the importance of 

considering the characteristics of image blocks in the 

denoising process to achieve optimal results. With the 

proposed approach, which is to perform 2D and 3D 

transformations adaptively based on the availability of 

similar blocks, the BM3D algorithm can improve its 

performance and produce better image denoising. This 

research provides new insights into the development of 
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image-denoising techniques and can serve as a foundation 

for further research in this field. 

Several research recommendations can be considered 

and conducted to obtain further findings in optimizing the 

use of 2D and 3D transformations in image denoising 

processes, including exploring the use of hybrid 

transformations, evaluating algorithm performance on 

diverse datasets, and integrating machine learning 

techniques. Additionally, it is important to test algorithm 

performance on other types of noise such as salt-and-

pepper noise, speckle noise, or other noise types, and to 

develop more complex adaptive algorithms that can 

dynamically adjust the type of transformation based on the 

context of the image blocks. Another recommendation is 

to implement the proposed algorithms in real-world 

applications such as medical image processing or image 

restoration so that further research can continue to develop 

more effective, efficient, and applicable image-denoising 

techniques in various image-processing contexts. 
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