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Abstract—Histopathological image analysis is a reliable 
method for prostate cancer identification. In this paper, we 
present a comparative analysis of two approaches for 
segmenting glandular structures in prostate images to 
automate Gleason grading. The first approach utilizes a 
hand-crafted learning technique, combining Gray Level Co-
Occurrence Matrix (GLCM) and Local Binary Pattern (LBP) 
texture descriptors to highlight spatial dependencies and 
minimize information loss at the pixel level. For machine-
driven feature extraction, we employ a U-Net convolutional 
neural network to perform semantic segmentation of prostate 
gland stroma tissue. Support vector machine-based learning 
of hand-crafted features achieves impressive classification 
accuracies of 99.0% and 95.1% for GLCM and LBP, 
respectively, while the U-Net-based machine-driven features 
attain 94% accuracy. Furthermore, a comparative analysis 
demonstrates superior segmentation quality for 
histopathological grades 1, 2, 3, and 4 using the U-Net 
approach, as assessed by Jaccard and Dice metrics. This 
work underscores the utility of machine-driven features in 
clinical applications that rely on automated pixel-level 
segmentation in prostate tissue images.  
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I. INTRODUCTION

Prostate Cancer (PCa) is considered one of the foremost 
predominant and critical types of cancer among men, and 
it is considered the fourth main reason of cancer death in 
men [1]. An estimation of 1,806,590 new cancer cases and 
606,520 cancer deaths are projected to occur in the United 
States [2]. PCa symptoms are considered moderate 
developing and non-lethal, while if left untreated, some 
develop and spread rapidly with fatal outcomes. This 
relates to the associated unclear symptoms. The difficulty 
in diagnosing PCa lies in the requirement of multiple 
procedures. Among these, is detecting the presence of 
cancer regions in tissue by examining prostate tissue 
biopsy by pathologists. A Gleason grading score, which 
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determines the severity of cancer grade, is conventionally 
assigned to the examined tissue [3]. 

Early detection and precise diagnosis of Prostate Cancer 
(PCa) plays a vital role in the treatment of this disease. 
Physicians tend to discuss with patients symptoms they 
may have to find out if prostate problem persists. In order 
to decide whether a patient may have PCa, diagnosis tests 
are required. The traditional process consists of digital 
rectal examination and prostate-specific antigen blood test, 
followed by transrectal ultrasound guided biopsy [4]. The 
biopsy is recommended by clinicians if abnormality signs 
were found in the initial tests, as biopsies are considered 
the gold-standard for diagnosis. Extracted tissues will be 
stained with biomarkers, usually Hematoxylin-Eosin 
(H&E), a widely used method for tissue slides preparation 
(Fig. 1). Then stained tissue is analyzed under microscope 
for spotting suspicious areas, while increasing 
progressively the level of detail. Finally, samples are 
classified into a score from 1 to 5 according to Gleason 
grading [5]. The Gleason grading system is considered the 
standard system for PCa diagnosis. It is a standard 
endorsed by the World Health Organization and adopted 
worldwide by the pathologists [6]. 

Fig. 1. Tissue stained with Hematoxylin and Eosin (H&E) staining. 

Prostate tissue consists of gland units, the main 
components of the prostate gland unit are stroma, lumen, 
epithelial nuclei, epithelial cytoplasm, and blue mucin. 

prostate cancer, histological images 
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Fig. 2 illustrates the prostate gland component. Examining 
the glandular architecture for the prostate tissues, and the 
use of Gleason grading system helps the analysis and the 
description of cancer cell abnormalities as it involves 
assigning specific scores—ranging from 1 to 5—to each 
tissues based on the severity of cancer. These grades verify 
the aggressiveness of PCa, where benign tissues are 
described using grades 1 and 2, and grade 5 advanced. 

 

 
Fig. 2. Prostate gland components. 

In benign tissues (i.e. grades 1 and 2), glands appear as 
large single separated units, densely packed and having 
large branchy lumen components and thick gland 
boundaries with prominent nuclei. In this respect, Gleason 
grade 3 is the most frequent case of carcinoma. It is 
characterized by the irregular glandular patterns and the 
invasion of small glands into the stroma, also has small, 
circular lumen and thin nuclei boundaries [7], Furthermore, 
the pathological tissue exhibits a reduced cell density in 
the layer of epithelial nuclei. However, in Gleason grade 4, 
the glands start to lose their architecture; glands tend to 
fuse nearby gland we can notice the loss of normal gland 
units and structure become ill-defined. It is obvious that 
this grade does not have a well-separated gland unit with 
separate lumen, and well-defined epithelial cell layers on 
the boundary. Nuclei distribute uniformly instead of 
forming well-defined boundaries as in benign patterns and 
glands are poorly defined. Multiple glands are mixed to 
form a mass of glands containing multiple lumen 
components. Finally, Gleason grade 5 is characterized by 
the total loss of gland structure. It is rarely found in men 
whose prostate carcinoma is diagnosed early [8]. This 
grade is commonly simply differentiated by the presence 
of a large variety of scattered nuclei on the stroma, since 
its features are not significantly distinguishing. For that 
reason, grade 5 is not considered in this research. 

Since image texture serves a key role in identifying 
objects or specific regions of interest in an image, this 
work investigates how texture features of prostate images 
can help in improving PCa diagnosis and accurate Gleason 
grading. For this purpose, statistical methods for 
examining texture that consider spatial relationship of 
pixels using Gray Level Co-occurrence Matrix (GLCM), 
and Local Binary Pattern (LBP) was adopted and tested [9]. 
In addition, the Convolutional Neural Network (CNN) will 
be used for finding patterns to recognize an object in an 
image and the preferences of eliminating the need for 

manual feature extraction. The process of allocating 
Gleason scoring to a histopathology image is subjective 
and time consuming due to tissue complexity and 
physician interpretation, which often leads to elevated 
levels of intra and inter-observer variability. To this end, 
the need for increasing reproducibility of the grading 
process and to save pathologist time arises. Although there 
are different techniques that have been suggested so far, 
the development process of a reliable algorithm for PCa 
diagnosis is still an open problem. Thereby, there is a need 
for investigating the effectiveness of extracted image 
features for a reliable and robust PCa diagnosis system, 
especially for segmenting Gleason grade 2 and 3.  

Accordingly, our work aims to develop a model for 
accurate diagnosis of PCa using histopathology images 
and Gleason scoring. Gland features, which exhibit 
significant variation in size, shape, and color intensity of 
different tissue components, have potential for 
classification of tissue images. We adopt texture and color 
features of the prostate images and quantify them using 
GLCM and LBP features. Segmenting prostate tissue 
images into gland and stroma objects based on extracted 
features from tissue glands is a challenging task that can 
be summarized in three stages: feature extraction, 
classification, and segmentation. These stages rely on 
image processing, machine learning, and deep learning 
techniques. Discriminating between grades 3 and 4 is 
especially difficult because gland morphology tends to be 
altered, leading to loss of structure and eventually reduced 
effectiveness of automated diagnosis. Our work 
investigates the effectiveness of hand-crafted features 
versus machine-learned features for classifying and 
segmenting gland stroma regions. We employ a traditional 
hand-crafted learning approach using GLCM and LBP 
with sliding windows to extract spatial relationships of 
pixel features at different displacements and angles, as 
well as an automated feature extraction process using 
deep-learning techniques in a specific encoder-decoder 
architecture based on a U-Net model. In the next stage, we 
employ various machine learning algorithms to classify 
gland from stroma components using hand-crafted 
extracted features from the previous stage. Finally, we 
perform a segmentation process to achieve a good 
separation of glands.  

We introduce a simple online decision support tool 
designed to assist pathologists in distinguishing between 
normal and cancerous tissues. The web tool, accessible at 
http://193.188.66.253/webapps/home/index.html, can 
accurately segment glands and stroma objects in prostate 
tissue, providing faster and more reliable second opinion 
support. By offering an objective measure, the automated 
tool has the potential to overcome the inherent subjectivity 
and dependence on pathologists’ level of expertise. The 
basic focus of this work is to improve the reliability and 
validity of diagnosis, especially in rural clinics with 
limited consultants and infrastructure, and thus represents 
a valuable contribution to the field of diagnostic pathology. 

This research work presents several contributions, 
including: 
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1. A comparative analysis of two different feature 
extraction methods, namely hand-crafted and 
machine-driven, for the classification of gland and 
stroma image patches. 

2. Evaluation of both hand-crafted features (based on 
GLCM and LPB) and machine-driven features 
(based on U-Net autoencoder architecture) for 
pixel-level semantic segmentation. 

3. Comparison of the accuracy and training time of 
different feature extraction approaches with recent 
works. 

4. Implementation of a web tool using the best pixel-
level segmentation approach. 

The following is the organization of the paper: In 
Section II, the related literature is presented in detail. 
Moving forward, Section III discusses the technical 
approach and the data used in the study. In Section IV, the 
experimental results are presented, and the main findings 
are interpreted. Finally, Section V provides a conclusion to 
the work. 

II. RELATED STUDIES 

Many studies over the past years have examined and 
investigated different approaches for medical image 
segmentation using both machine and deep learning 
approaches. Methods performing prostate image 
segmentation using hand-crafted feature extraction 
techniques and pixel-level base features extraction using 
U-Net architecture will be discussed. 

Rezaeilouyeh et al. [10] propose the use of a Discrete 
Shearlet Transform (SHT) for feature representation. A 
histogram of Shearlet coefficients was implemented as 
feature for classification, SHT was compared with other 
filtering techniques like wavelets and Gabor filter and 
achieved a promising accuracy result of 89% in cancer 
diagnosis between benign and malignant prostate tissue 
according to Gleason grading. However, [6] targeted to 
have an automatic classification from biopsy images for 
PCa. A multi-classifier system was proposed, based on 
tissue descriptors to explain textural features of the 
histopathology images. Six different methods were applied 
for the purpose of feature extraction; the first three were 
measured from the Quaternion Wavelet Transform 
coefficients, quaternion ratios, and the histograms of 
multiresolution local binary patterns and were used with 
the Bayesian classifier. However, the other features were 
based on discrete Haar wavelet transform, color fractal 
dimension, and morphometric characteristics of the tissue 
and were used with Support Vector Machine (SVM) 
classifiers. The simulations of the system were carried out 
on a dataset of 71 images of H&E-stained prostate tissue 
and achieved 98.89% correct classification rate. Another 
work by Ren et al. [11] for prostate gland segmentation 
was proposed and applied on different staining 18 images, 
to distinguish the Gleason 3 and 4 score in images from 
various structural graphic, region-based nuclei 
segmentation was used to in order to eliminate the need for 
lumen as prior information and to get individual gland. 
Progression from grade 3 to grade 4 was measured by 
calculating a gland shape variation score. The work 

assumes that the number of local maximal points within 
the glandular region represents the number of glands. 
Results achieved for precision, recall, and F1 were 94%, 
60% and 70% respectively. 

Other works were based on local structural modeling to 
implement automatic Gleason grading, using segmented 
tissue of the component, for each sub-image, a local 
structure feature was extracted [12]. A lumen-nuclei co-
location feature was used to model sub-graphs features, 
learned as bags-of-words features for each labeled grade 
sample. Codebook and 3-class SVM classifier were used 
to obtain the structural similarity between sub-graphs in 
unlabeled images and the representative sub-graphs. The 
300 H&E stained prostate histopathology images were 
used for testing and the average grading accuracies of 91%, 
76%, and 65% were obtained on Grade 3, 4 and 5 samples 
respectively. In a similar manner, a computer aided 
diagnosing system for automatic grading of PCa tissue, 
was proposed by Ali et al. [13], which was based on 
discrete wavelet packet decomposition, where it was used 
to divide the image into all sub-band by providing a 
predefined number of levels. From each sub-band of the 
prostate tissue images four statistical features based on 
GLCM were extracted and Multiclass SVM achieved 92% 
accuracy.  

In order to compare various feature extraction 
algorithms, Öztürk and Akdemir [14] used a multi-feature 
extraction algorithm and applied them on histopathologic 
images and compared the results using different classifiers. 
Feature matrices were extracted from cut image parts using 
Gray-Level Co-Occurrence Matrix (GLCM), Local Binary 
Pattern (LBP), Local-Binary Grey Level Co-Occurrence 
Matrix (LBGLCM), Gray Level Run Length Matrix 
(GLRLM), and Segmentation-based Fractal Texture 
Analysis (SFTA) as feature extraction techniques. Then 
they were classified using SVM, KNN, Linear 
Discernment Analysis (LDA) and Boosted Tree. The 
obtained feature matrix by SFTA algorithm produces the 
more successful result compared to other algorithms, and 
among classifiers Support Vector Machine (SVM) and 
Boosted Tree algorithms were the more effective ones. 

In recent years, the use of convolutional neural network 
models has been explored to learn features directly from 
the image to avoid manual segmentation. In 2017, 
Zhou et al. [15] proposed the employment of Deep Neural 
Networks. Their work focused on strong classification to 
discriminate between Gleason grade 3+4 and 4+3, the 
method combined the extracted features from data 
engineering as well as those features that were learned 
automatically by the deep neural network. A method for 
optimizing color decomposition was developed for 
Hematoxylin density extraction. K-means clustering was 
used to extract the tumor part, in a way that they only focus 
on tumor part for that the subsequent learning and 
classification part. Finally, convolutional neural network 
classifiers trained on Gleason 7, the accuracy based on 368 
slides of whole-slide images was 75%.  

The architecture of the U-Net model was proposed by 
Ronneberger et al. [16] they extend the architecture of 
fully convolutional networks by adding a relative 
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symmetric up-sampling path to down-sampling path, 
creating a U-shaped network architecture that can be 
worked with fewer training images. The architecture 
provides satisfactory results, it achieved an average IOU 
(Intersection Over Union) 77.5% on cell segmentation. U-
Net was developed where Li et al. [17] developed multi-
scale U-Net to predict four tissue classes at once (i.e. 
stroma, benign, grade 3, and grade 4). Mean Jaccard and 
10-fold cross validation were used as evaluation metric to 
compare their proposed multi-scale U-Net with the stander 
U-Net and pixel wise CNN. The outperforming result was 
achieved compared with other models, providing a mean 
Jaccard of 65.8% across 4 classes, namely stroma, Gleason 
3, Gleason 4, and benign glands, and 75.5% for 3 classes, 
namely stroma, benign glands, and PCa. Lately, U-Net has 
proven to be the most prominent deep network for medical 
image segmentation, therefore. Ibtehaz and Rahman [18] 
and Kalapahar et al. [19] proposed new modification on 
the standard U-Net architecture by adding residual block 
connection, a type of configuration in convolutional filters 
with skip-additive connections to improve the efficiency 
in segmenting biomedical images. Ibtehaz and 
Rahman [18] develop a novel architecture MultiResU-Net 
by adding as we have mentioned the residual block 
connection and introduce the 1×1 convolutional layer. 
They also greatly reduce memory requirement by 
factorizing the bigger, more demanding 5×5 and 7×7 
convolutional layers, using a sequence of smaller and 
lightweight 3×3 convolutional blocks. They compare their 
result with the stander U-Net on five public datasets for 
medical image, using Jaccard index as evaluation metric 
and it shows improvement in performance of 10.15%, 
5.07%, 2.63%, 1.41%, and 0.62% in using MultiResU-Net 
over U-Net. As well as Kalapahar et al. [19] proposed the 
Residual U-Net, and compare their performance with other 
deep networks (e.g. Fully Convolutional Networks, the 
SegNet and the stander U-Net architecture) and applying 
the deep learning segmentation models on full gradation of 
cancerous patterns in prostate biopsies, this dataset related 
to 96 patients, with a total of 182 prostate biopsies belong 
to them. Their proposed model achieved a pixel-level 
Cohen’s quadratic kappa of 0.52 in the test data. 
Additionally, the work of Vacacela and Benalcázar [20] 
proposed prostate segmentation for the central gland and 
peripheral zone. The work evaluated and compared 
between two models applied on 2D semantic segmentation, 
the first model used encoder-decoder architecture on the 
global and local U-Net architecture, while the second 
model used encoder-classifier based on VGG16 pre-
trained network, the experiments showed better 
performance for the former model when applied to Ductal 
Carcinoma as compared to the latter model that used a per-
trained network. Comelli et al. [21] compared three U-Net 
model types: U-Net, efficient neural network, and efficient 
residual factorized convNet on prostate patient who went 
through MRI (Magnetic Resonance Imaging) examination, 
then applied resizing and data augmentation on the 
resulting MRI images, finally k-fold cross validation was 
applied and the result shows a Dice similarity coefficient 
of 90.89%. 

In recent work by Liu et al. [22], a study was conducted 
on multi-parametric Magnetic Resonance Imaging 
(mpMRI) as a noninvasive alternative for Prostate Cancer 
(PCa) detection and characterization. They developed a 
Mutually Communicated Deep Learning Segmentation 
and Classification Network (MC-DSCN) based on mpMRI 
for prostate segmentation and PCa diagnosis. The primary 
goal was to design an MC-DSCN that jointly performs 
segmentation based on pixel-level information and 
classification based on image-level information. The 
proposed architecture transfers mutual information 
between segmentation and classification components, 
facilitating each other in a bootstrapping manner. The 
results showed Intersection over Union (IOU) percentages 
increasing from 84.5% to 87.8% and 83.8% to 87.1% for 
two different datasets, respectively. Furthermore, 
Gavade et al. [23] explored four deep learning 
architectures for mpMRI-based PCa segmentation and 
classification. The architectures included Semantic 
DeepSegNet with ResNet50, DeepSegNet with Recurrent 
Neural Network (RNN), U-Net with RNN, and U-Net with 
Long Short-Term Memory (LSTM). Their findings 
indicated that the combination of U-Net and LSTM 
achieved the best segmentation and classification results.  

From the previous literature review, it is shown that 
histopathological image analysis is vital for accurate 
detection and diagnosis of PCa. However, a significant 
research gap exists in comparing the performance of hand-
crafted features and machine-driven features, particularly 
in differentiating between normal and cancerous tissues at 
early stages. This work aims to fill this gap by conducting 
a comprehensive comparative analysis of these feature 
extraction approaches for PCa segmentation and 
classification. By investigating the effectiveness of hand-
crafted features that capture domain-specific knowledge 
and machine-driven features that reveal complex patterns, 
this research seeks to provide insights into the optimal 
approach for accurate classification and segmentation. 
Furthermore, the development of an online web tool as a 
reliable second opinion for pathologists in regions with 
limited access to specialized expertise is a key goal, which 
will benefit communities with under-resourced healthcare 
settings. 

III. MATERIALS AND METHODS 

A. Dataset 

To investigate the effectiveness of hand-crafted features 
that capture domain-specific knowledge against machine-
driven features that uncover complex patterns, we 
conducted experiments using the dataset provided by 
García et al. [24]. We selected this dataset due to its 
inclusion of whole-slide images encompassing both 
healthy tissue and tumor prostate areas, making it highly 
compatible with our case study’s pre-processing steps. The 
dataset’s whole-slide images are well-suited for the 
techniques we employ, ensuring effective application and 
evaluation of our methods. Furthermore, the dataset 
facilitates comparative analysis with other studies and 
includes annotations by expert pathologists, ensuring the 
accuracy and reliability of ground truth labels. This high-
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quality annotation is critical for training and validating our 
models, contributing to robust and reproducible results. 
The dataset comprises 35 whole-slide images, with 17 
representing healthy tissue and 18 representing tumor 
tissue, collected from 25 patients. The diversity of samples 
can enhance the generalizability of our work, where expert 
pathologists from the Hospital Clínico Universitario de 
València annotated the tissue images.  

In order to prepare the data for analysis, a pre-
processing step was performed. This involved identifying 
the region of interest using a bounding box and eliminating 
irrelevant pixel information (as illustrated in Fig. 3(a)). To 
enhance resolution and local information, sub-images of 
reduced size were created using a sliding window protocol 
(as shown in Fig. 3(b)). The resulting bounding box was 
divided into patches measuring 1024×1024 pixels, 
equivalent to an optical magnification of 10×. Patches 
containing less than 5% of tissue pixels, which provide 
minimal useful information, were discarded (as depicted in 
Fig. 3(c)). The final dataset consisted of 3,195 benign 
glands (as shown in Fig. 3(d)), 3,000 cancerous glands of 
Gleason grade 3, and 3,200 artifacts (i.e., false glands). 

 

Fig. 3. Dataset preparation [25], (a) example of a whole-slide image; (b) 
region of interest from which we perform the sliding window protocol; 
(c) sub-image of 1024 × 1024 pixels from which we address the Gland 
Candidate; (d) Gland Candidate. 

B. Preprocessing Prostate Tissue   

The pre-processing steps involved initially dividing the 
histopathology images into gland stroma patches. 
Subsequently, the input patches were resized to 384×384 
pixels to ensure compatibility with CPU memory 
constraints. A total of 280 patches were collected, 
consisting of 125 stroma patches and 155 gland patches. 
For the hand-crafted feature extraction experiment, the 
gland stroma image patches were converted into grayscale 
color models. 

C. Feature Extraction 

After the completion of the pre-processing steps on the 
histopathology prostate images, the image patches are 
prepared for the subsequent feature extraction stage. In this 
stage, we applied hand-crafted techniques to extract twelve 
features from the patches. To reveal the relation between 
pixel neighbors and minimize information loss, a sliding 
window method was employed, varying the displacement 
and angle, and utilizing the gray level co-occurrence 
matrix for one approach and local binary pattern feature 
extraction method for the other approach. It is important to 
note that these approaches differ in terms of the specific 
techniques employed for feature extraction where all the 
experiments were conducted using MATLAB 2020a 
(Mathworks, Inc). 

1) Gray level co-occurrence matrix 
The spatial distribution of gray values plays a crucial 

role in defining texture characteristics, and deriving 
statistical features from these distributions has long been 
recognized as an early technique in the field of image 
processing. Haralick introduced the concept of co-
occurrence matrices for extracting texture features, which 
remains one of the most widely used methods for capturing 
second-order statistical properties [26]. The process of 
extracting texture features involves two main steps: first, 
the computation of the co-occurrence matrix, followed by 
the interpretation of texture features based on spatial 
relationships. The Gray Level Co-occurrence Matrix 
(GLCM) is a two-dimensional histogram that represents 
the distribution of gray levels for pairs of pixels with a 
fixed spatial relationship. The GLCM is computed using a 
displacement vector defined by its distance (δ) and 
orientation (θ) (Gadkari, 2004). In our work, Fig. 4(a) 
illustrates an example of a GLCM with a distance (δ) of 1 
and a horizontal direction (θ = 0°), representing the nearest 
horizontal neighbor relationship. Additionally, Fig. 4(b) 
shows the co-occurrence matrix offsets implemented in 
our work. 

 

 
Fig. 4. Example of gray level co-occurrence matrix method on an image 
patch. (a) using offset of [0 1], (b) offsets implemented to create each 
extracted hand-crafted features. 

2) Local binary pattern 
The Local Binary Pattern (LBP) technique is a first-

order neighborhood method used for extracting local 
features from images by evaluating the intensity variations 
between the central pixel and its neighboring pixels. This 
approach aims to identify diverse patterns by assigning 
binary labels to each pixel based on its relationship with 
the center pixel. Specifically, for each neighbor, a 0 bit is 
assigned if its pixel value is smaller than the central pixel, 
whereas a 1-bit value is assigned if it is equal to or greater 
than the central pixel value. These binary bits are then 
concatenated in a clockwise order, and the binary 
representation of the central pixel is replaced with its 
corresponding decimal value. The resulting histogram of 
LBP labels, representing the frequency of occurrence of 
each label within an image region, serves as a texture 
descriptor for the image of interest [27], as illustrated in 
Fig. 5. 

3) Convolutional neural networks 
In recent years, the remarkable advancements and 

exceptional performance of deep learning have captured 
the attention of researchers, establishing it as the preferred 
approach for numerous medical image analysis problems. 
These include tasks such as image denoising, semantic 
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segmentation, and classification. Semantic segmentation, 
in particular, is a specialized image processing technique 
that involves the division of an image into distinct regions 
possessing similar characteristics, such as colors, textures, 
or other features. When objects sharing common 
properties are assigned the same label based on their 
semantic meaning, it is referred to as semantic 
segmentation. Undoubtedly, this technique holds 
significant importance and continues to be an active area 
of research within the field of computer vision. 

 

 
Fig. 5. Example of local binary pattern method using a 33 

neighborhood threshold by central pixel value. 

The task of semantic segmentation revolves around the 
assignment of each pixel in an image to a corresponding 
object class, effectively labeling every pixel with a specific 
category. To achieve this, the present work employed deep 
learning models based on the widely adopted U-Net 
architecture. U-Net is an encoder-decoder network 
architecture extensively utilized in medical image 
segmentation, as will be further discussed. 

D. Deep Convolutional Neural Network for Biomedical 
Image Segmentation 

The histopathological images were segmented using the 
classical U-Net, a widely employed architecture for 
biomedical image segmentation. This architecture, 
depicted in Fig. 6, is constructed with meticulous design 
principles that contribute to its effectiveness. 

The U-Net architecture comprises two main sections: 
the encoder and the decoder. The encoder serves as a 
contracting path and employs a series of progressive 
convolutions to extract distinctive features from the input 
image. This process involves two consecutive 3×3 
convolutional layers, followed by a 2×2 max pooling 
operation with a stride of 2. This operation is repeated four 
times, enabling the extraction of increasingly complex 
features. It is noteworthy that the number of filters in the 
convolutional layers is doubled as the down-sampling 
operations progress deeper into the architecture, as 
depicted in Fig. 6. Connecting the encoder to the decoder 
are two additional 3×3 convolutional operations [18] 

On the other hand, the decoder constitutes an extending 
path that incorporates a sequence of up-sampling 
operations followed by 2×2 convolutions. The decoder 
initiates the process by up-sampling the feature map 
through a 2×2 convolution operation, effectively reducing 
the number of feature channels by half. Subsequently, a 
series of two 3×3 convolutional operations is performed, 

repeated four times, successively decreasing the number of 
filters by half at each stage. Finally, a 1×1 convolution 
operation generates the segmentation map. Throughout the 
U-Net architecture, all convolutional layers, except for the 
final one, employ the Rectified Linear Unit (ReLU) 
activation function, while the last convolutional layer 
utilizes the sigmoid activation function [28]. 

One notable characteristic of the U-Net architecture is 
the extensive use of feature channels in the up-sampling 
path. This enables the propagation of contextual 
information from the contracting path to lower-resolution 
layers. Consequently, more precise localization is 
achieved in the expanding path, resulting in a symmetrical 
and U-shaped architecture [29]. 

 

 
Fig. 6. Applied U-Net architecture for prostate image segmentation. 

E. Interactive Web Tool Design 

The proposed model in this study encompasses multiple 
stages, each contributing to the overall process of prostate 
tissue segmentation. These stages include data collection, 
image preprocessing, hand-crafted feature extraction 
utilizing GLCM at various offsets, hand-crafted feature 
extraction using LBP at different radii, machine learning-
based classification of the extracted features, fusion of 
features extracted from GLCM and LBP, feature selection 
of the hand-crafted features, image segmentation, and 
ultimately semantic segmentation employing the U-Net 
architecture. Fig. 7 illustrates the application of prostate 
tissue segmentation through this comprehensive process. 

To enable histopathologists to obtain a second opinion 
on image segmentation, an interactive web tool has been 
developed. This user-friendly tool facilitates the uploading 
of histopathological prostate images for online image 
segmentation. The web tool’s semantic segmentation 
functionality relies on the best segmentation model 
identified in the experimental results section of this work. 

To tackle the classification and segmentation of gland 
and stroma objects, we explored five commonly used 
classifiers for hand-crafted feature extraction, as found in 
the existing literature. Specifically, Support Vector 
Machine (SVM), k-Nearest Neighbor, Bagging, Random 
Forest, and Naïve Bayes classifiers were utilized. For the 
semantic segmentation task, we employed the U-Net 
architecture as a classical convolutional network 
specifically designed for biomedical image segmentation. 
The U-Net model addresses the challenge of limited 
training data in medical image segmentation. The purpose 
is to achieve competitive segmentation results even with a 
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smaller training dataset compared to traditional CNNs. 
Upon request authors should be prepared to send relevant 
documentation or data in order to verify the validity of the 
results. This could be in the form of raw data, samples, 
records, etc. Sensitive information in the form of 
confidential proprietary data is excluded. 

 

 
Fig. 7. Pipeline diagram of the interactive web tool design for automatic 

diagnosis of prostate cancer. 

F. Performance Assessment 

Following the feature engineering extraction, selection, 
and implementation of various models for gland stroma 
image segmentation, the subsequent step involves 
evaluating the effectiveness of the model using different 
evaluation metrics on the test dataset. In this work, we 
employ accuracy as an evaluation metric for classification 
problems using a confusion matrix to compare the 
performance of different machine learning classifiers. 
Accuracy is defined as the ratio of correctly identified 
examples in all classes, as expressed by the equation: 

ݕܿܽݎݑܿܿܣ  = 	 ்	ା	்ே்	ା	்ே	ା	ி	ା	ிே   (1) 

 
here, TP represents the number of true positives, TN 
represents the number of true negatives, FP represents the 
number of false positives, and FN represents the number 
of false negatives. 

To assess the quality of the segmentation at the pixel 
level for each image, we utilize two evaluation indices: 
Jaccard index and Dice index. These indices measure the 
similarity between the set of pixels marked as ground truth 
(X) and the set of pixels segmented as glandular structures 
(Y). Both indices produce scores ranging from 0 to 1, 
where a score of 1 indicates a perfect segmentation [30]. 
Particularly, the Dice and Jaccard index are commonly 
used metrics to assess the similarity between ground truth 
and segmented images in semantic segmentation tasks. 
The Dice index quantifies the overlap between two sets 
and can be expressed as: 

ௗ௫݁ܿ݅ܦ  = 	 ଶ×்ଶ×்ାிାிே            (2) 

 
where, TP represents the number of true positives, FP 
represents the number of false positives, and FN represents 
the number of false negatives. The Jaccard index, also 
known as the Intersection over Union (IoU) or Jaccard 

similarity coefficient, measures the similarity and diversity 
of sample sets and can be expressed as: 

 Jaccard = 	 ାା.  (3) 

 
For semantic segmentation architectures, additional 

metrics are commonly used to evaluate performance. 
These include the global accuracy, mean accuracy, mean 
Intersection over Union (IoU), weighted IoU, and mean 
boundary F1 (BF) score. The global accuracy metric 
calculates the ratio of correctly classified pixels to the total 
number of pixels in an image, irrespective of class. It is 
defined as: 

௨௬݈ܾ݈ܽܩ  = 	 ଵ∑ ்ାி   (4) 

 
where, TPi represents the number of pixels predicted to 
belong to class i, and FPi represents the total number of 
pixels of class i in the dataset. The global accuracy is 
expressed as a percentage. The mean accuracy metric 
computes the ratio of correctly classified pixels in each 
class to the total number of pixels, averaged over all 
classes: 

௨௬݊ܽ݁ܯ  	=	= 	 ଵ ∑ ்்ା	ி   (5) 

 
where, n is the number of different classes. The mean IoU 
metric calculates the average Intersection over Union for 
all classes in the dataset: 

ூ݊ܽ݁ܯ  = 	 ଵ ∑ ்்ାிାிே   (6) 

 
where, FNi represents the number of pixels predicted to 
belong to class i but are not assigned that class by the 
ground truth or predictor. The weighted IoU metric 
measures the average IoU of all classes, weighted by the 
number of pixels in each class: 
 ܹ݁݅݃ℎ݀݁ݐூ = 	 ∑ ௪×ூ ∑ ௪   (7) 

 
where, wi is the number of pixels in class i. 

The mean BF score evaluates the similarity between the 
predicted and ground truth class boundaries, taking into 
account a pixel tolerance distance. The mean BF score is 
calculated as: 

ி_ௌ݊ܽ݁ܯ  = ଵே ∑ ଶ×௦ೖ×ோೖ௦ೖାோೖேୀଵ  (8) 

here, N represents the total number of images in the dataset. 
The precision (Precisionk) and recall (Recallk) values 
between the predicted and ground truth class boundaries, 
given a pixel tolerance distance, are determined using the 
following equations: 
݊݅ݏ݅ܿ݁ݎܲ  = 	 ்ೖ்ೖାிೖ  (9) 
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ܴ݈݈݁ܿܽ = 	 ்ೖ்ೖାிேೖ     (10) 

 
where, TPk represents the number of true positives for class 
k, FPk represents the number of false positives for class k, 
and FNk represents the number of false negatives for class 
k. Among the evaluation metrics discussed, the mean 
Intersection over Union (IoU) is the most commonly used 
metric. It is regarded as a more precise metric compared to 
global accuracy since it penalizes false positive predictions. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

In this section, we present a detailed explanation of the 
conducted experiments along with their corresponding 
results. The experiments are organized into three main 
categories: firstly, hand-crafted feature extraction utilizing 
GLCM and LBP for image classification, followed by the 
segmentation process, and ultimately, the application of 
semantic segmentation using the U-Net architecture. 

A. Image Classification using GLCM 

In this work, we employed the GLCM approach to 
calculate the co-occurrence matrix, allowing us to gather 
valuable information about the orientation of gland and 
stroma structures. For each offset and color image, we 
extracted a total of eight distinctive features. The 
utilization of different offset values enabled us to obtain 
diverse sets of hand-crafted features for each gland and 
stroma candidate. To evaluate the effectiveness of our 
approach, we conducted classification experiments 
employing cross-validation techniques, specifically k-fold 
and holdout methods. The entire process of image 
classification and segmentation using GLCM features is 
depicted in Fig. 8. 

 

 
Fig. 8. Steps of image classification and segmentation using hand-

crafted gray level co-occurrence matrix features. 

To validate our results, we extracted hand-crafted 
features using the GLCM method from a dataset 
comprising 280 patches, including 125 stroma patches and 
155 gland patches. We partitioned the histopathology 
images into gland and stroma patches, and subsequently 
extracted the GLCM features with different offsets. 
Specifically, we considered a δ of 1 for θ values of 0°, 45°, 
90°, and 135°, and δ of 2, 4, 8, and 16 for all angles. The 
extracted features included Contrast, Entropy, Inverse 
Difference Moment, Correlation, Standard Deviation, 
Mean, and Angular Second Moment. These features were 
then utilized as inputs for five different classifiers: SVM, 
KNN, Bagging Trees, Naïve Bayes, and Random Forest. 

The results indicate that the SVM classifier, with a δ of 
1 and θ value of 0° using holdout validation (60% training, 
40% validation), as well as the K-Nearest Neighbors 
(KNN) classifier, with a δ of 1 and θ value of 90° using 10-
fold cross-validation, δ of 2 and θ value of 0° using 20-fold 
cross-validation, and δ of 4 and θ value of 0° using holdout 
validation (60% training, 40% validation), achieved the 
highest accuracy. We then employed the classifier that 
yielded the best accuracy on our testing patches to perform 
image classification and assign the testing patches to either 
the gland or stroma class. After applying the trained model 
to 104 testing patches, the SVM classifier achieved an 
accuracy of 99%, while the KNN classifiers achieved 
accuracies of 98% (δ = 1, θ = 90°), 96% (δ = 2, θ = 0°), 
and 98% (δ = 4, θ = 0°), respectively. Hence, based on the 
best accuracy results, SVM with a δ of 1 and θ value of 0° 
was determined as the optimal choice. 

B. Image Classification Using LBP 

In this step, we employ the LBP approach to calculate 
texture primitives and gather local spatial information 
about the orientation of gland and stroma structures. For 
each radius and color image, we extract four distinctive 
features. By utilizing different radius values, we can obtain 
a unique set of hand-crafted features for each gland and 
stroma candidate. To evaluate the performance of our 
approach, we conduct classification experiments using 
cross-validation techniques, including k-fold and holdout 
methods. 

The second approach for hand-crafted feature extraction 
involves the utilization of LBP on a total of 280 patches, 
comprising 125 stroma patches and 155 gland patches. 
Prior to model training, we perform the necessary 
preprocessing step of dividing the image into gland and 
stroma patches. LBP features are computed at radii of r = 
1, r = 2, r = 4, r = 8, and r = 16, enabling the extraction of 
first-order features such as mean, standard deviation, 
skewness, and kurtosis. These features are then used as 
inputs for five different classifiers: SVM, KNN, Bagging 
Trees, Naïve Bayes, and Random Forest. All the 
experiments were conducted using MATLAB 2020a. 

Our objective is to assess the performance of the trained 
model with higher accuracy on our testing patches, 
enabling image classification and assigning the patches to 
either the gland or stroma class. After applying the trained 
model to 104 testing patches, the results reveal that the 
SVM classifier achieved an accuracy of 95.1%. This 
accuracy serves as an indication of the model’s capability 
to accurately classify the testing patches and distinguish 
between gland and stroma structures. 

C. Image Classification with Feature Reduction  

For the creation of the Principal Component Analysis 
(PCA) space, we utilized a set of 280 training patches, 
consisting of 125 stroma patches and 155 gland patches. 
PCA was applied as a feature reduction technique on the 
twelve selected hand-crafted features from the GLCM and 
LBP methods that exhibited the best results. Specifically, 
GLCM features were obtained at (δ = 1, θ = 0), and for 
LBP, the radius value of 1 was employed. 
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The goal of PCA is to identify the directions of 
maximum variance in high-dimensional data and project it 
onto a new subspace with an equal or reduced number of 
dimensions compared to the original space. In our case, 
PCA was applied to the training features. Following the 
training process, three features with the highest variance 
were retained, with variances per feature listed in the 
following order: contrast (72.8%), correlation (18.5%), 
and energy (5.2%). The accuracy achieved by the model 
after PCA feature reduction was 96.4%. A summary of the 
results obtained from the various methods applied to the 
testing patches of histopathology prostate gland stroma is 
illustrated in Fig. 9. 

From the experimental results, it is evident that the 
performance of the GLCM approach alone surpasses the 
performance of the combined GLCM+LBP approach 
when incorporating PCA. Furthermore, the SVM classifier 
consistently demonstrated superior performance compared 
to other classifiers when utilizing a 20-fold cross-
validation strategy. 

 

 
Fig. 9. Overall classification accuracy results for applied hand-crafted 

feature extraction methods. 

D. Image Segmentation using Individual and Combined 
Hand-Crafted Features 

We compare the performance of prostate image 
segmentation using individual hand-crafted features, 
specifically focusing on gland and stroma segmentation. 
We investigate four model architectures: GLCM, LBP, 
GLCM+LBP, and PCA as a feature reduction technique. 
A comprehensive evaluation of segmentation results is 
conducted, comparing the performance of these different 
models. 

To perform image segmentation, we adopt a sliding 
window protocol to analyze patches containing both gland 
and stroma components. GLCM and LBP features are 
extracted for each pixel in the image by applying a sliding 
window with a size of 35×35 pixels, suitable for images 
sized at 384×384 pixels. This approach yields a total of 
147,456 features for an image of this size. The 
approximate inference time for each model is also 
measured, and it took approximately 2 minutes to complete 
the image segmentation process. The steps involved in 

image segmentation using combined hand-crafted features 
are depicted in Fig. 10. 

To validate the effectiveness of the different hand-
crafted models, we employ four distinct testing images to 
assess the performance of the models in gland and stroma 
image segmentation. Furthermore, we analyze the 
segmentation results using various evaluation metrics. 
Fig. 11 illustrates the original image, annotated image with 
pink annotations representing the stroma in the ground 
truth image, and gray annotations representing the gland. 
It also displays the segmentation results obtained using the 
GLCM, LBP, GLCM+LBP, and feature reduction models, 
respectively. 

 

 
Fig. 10. Steps of image segmentation using hand-crafted features of both 
Gray Level Co-occurrence matrix and local binary pattern methods. 

Fig. 11. Segmentation results using hand crafted models. 

E. Semantic Segmentation Using U-Net  

Prostate image segmentation plays a key role in image-
guided intervention. However, the lack of clear boundary, 
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and the huge variation of shape and texture between the 
images from different patients make the task particularly 
challenging. To overcome these problems. In this work, we 
utilize an upgrade of Fully Convolutional Network (FCN) 
for semantic segmentation, the U-Net architecture. Since 
deep learning simplified the process to perform semantic 
segmentation and achieve impressive results as previously 
shown, the U-Net was designed to obtain accurate 
segmentation with a few training images. The proposed 
model can effectively detect the gland stroma prostate 
region, where the task of semantic segmentation is to 
predict individual pixel values whether they belong to a 
specific interest region – in our case belong either to gland 
or stroma component. 

1) Data set preparation  
The input of the network includes two types of data: 

images to be learned from and the mask coordinates of the 
desired labeled objects of the image for the learning 
process (Gland and stroma patches and their prelabeled 
image). We labeled the image using the Image Labeler in 
MATLAB 2020a. A sample labeled image can be seen in 
Fig. 12 that was used for testing our U-Net training model. 
To perform a controlled training procedure, the 
architecture was trained with 60 epochs. 

 

 
Fig. 12. Histopathological image showing gland and stroma: (a) 

Unlabeled image (b) Labeled image. 

2) Training process 
In this experiment, our dataset comprises images 

captured from various glands and stroma patches. We 
utilized a consistent dataset consisting of 200 Red, Green, 
Blue (RGB) images, each with fine pixel-level labeling. 
Among these images, 150 were designated for the training 
set, along with their corresponding target masks, while the 
remaining 50 images constituted the testing set. 

For training the U-Net model, we employed a pixel-wise 
Softmax function for the final segmentation, which was 
combined with a cross-entropy loss function. This loss 
function analyzes each pixel individually, comparing the 
class predictions to our one-hot encoded target vector, 
which represents the labeled image. Since the class labels 
are nearly balanced, we selected cross entropy as our loss 
function. However, the Dice coefficient would be a 
suitable alternative in cases of class imbalance. 

During the training process, the approximate training 
time was around fifteen hours, considering the specific 
environment settings employed. After training, the model 
achieved an accuracy of 94%. 

3) Evaluating training network 
The segmentation results achieved using the U-Net 

architecture for a representative image are presented in 
Fig. 13. Despite having a small training dataset, the U-Net 
model demonstrated superior performance in gland stroma 
image segmentation. The accuracy of the U-Net model was 
evaluated using testing images, and the approximate 
inference time for the model was measured, taking 
approximately 1 minute to perform patch image 
segmentation. 

Various metrics were adopted to evaluate the 
segmentation results on the testing set, as shown in Table I, 
where the accuracy and Intersection over Union (IoU) 
segmentation values for each Gland and Stroma class are 
displayed. Additionally, the Mean Boundary F1 Score is 
provided. 

The qualitative results demonstrate the capability of the 
proposed U-Net architecture to accurately segment 
prostate images into gland and stroma classes. To validate 
our trained model, we tested it on four different image 
patches, and the results are depicted in Fig. 13. 

 

 
Fig. 13. Semantic segmentation result using the U-Net trained model. 

TABLE I. ACCURACY AND IOU SEGMENTATION VALUE FOR EACH 

GLAND AND STROMA CLASS 

Semantic 
Segmentation 

Accuracy IoU MeanBFScore 

U-Net 
Gland 0.91% 0.80% 0.40% 
Stroma 0.95% 0.91% 0.81% 

F. Performance Evaluation  

To compare the image segmentations produced by the 
previous techniques with the labeled ground-truth images, 
two commonly adopted segmentation metrics, namely the 
Jaccard index and Dice index, were utilized. These metrics 
directly measure the generalization ability of the models in 
segmenting regions of interest on unseen hold-out data, 
specifically the gland and stroma segmentation of the 
prostate image patches. Both measures were calculated on 
the resampled image with a size of 384×384. 

Table II provides a detailed overview of the 
segmentation results obtained in this study for grades 1, 2, 
and 3. The Jaccard and Dice indices demonstrate higher 
segmentation accuracy for the U-Net model. The results 
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indicate that, in terms of segmentation performance, the 
automated feature extraction using the deep learning U-
Net model, originally developed for biomedical image 
segmentation, outperforms hand-crafted features. 

In contrast, a related work by [25] showed that hand-
crafted features combined with an SVM classifier yield 
superior results compared to the deep learning VGG19 
network in classifying benign vs. pathological (grade 3) 
images. The SVM classifier achieved accuracies of 88% 
compared to VGG19, which achieved 81% accuracy using 
5-fold cross-validation to evaluate model performance. In 
their work, four different families of descriptors were 
employed for feature extraction, including morphological, 
fractal analysis, texture descriptors using GLCM and LBP, 
and contextual features. The SVM classifier applied to the 
GLCM and LBP features achieved accuracies of 99% and 
95.1%, respectively, using 20-fold cross-validation. It 
should be noted that in their work, the last convolutional 
neural network in VGG19 was fine-tuned specifically for 
gland feature learning. However, the transfer learning 
approach with the generic VGG-19 network, trained on 
natural images, may not be as effective as utilizing the U-
Net model, which was initially optimized for medical 
image segmentation and achieved an accuracy of 94% in 
our study. Fig. 14 visually compares the results obtained 
in our proposed work with those of [25]. 

Overall, the evaluation metrics demonstrate the superior 
performance of the U-Net model in our segmentation task, 
underscoring the importance of leveraging deep learning 
approaches specifically designed for medical image 
analysis. 
 

Fig. 14. Accuracy Comparison between our proposed work and [25]. 

TABLE II COMPARING IMAGE SEGMENTATION QUALITY FOR HAND-CRAFTED AND MACHINE-LEARNED MODELS 

Segmented Image 
GLCM LBP GLCM+LBP PCA U-Net 

Jaccard Index Dice Index Jaccard Index Dice Index Jaccard Index Dice Index Jaccard Index Dice Index Jaccard Index Dice Index 

Grade 1 0.30 0.46 0.35 0.52 0.33 0.49 0.19 0.19 0.85 0.92 

Grade 2a 0.25 0.32 0.28 0.35 0.19 0.32 0.21 0.21 0.80 0.91 

Grade 2b 0.24 0.35 0.34 0.48 0.35 0.52 0.39 0.39 0.82 0.90 

Grade 3 0.30 0.47 0.25 0.40 0.31 0.47 0.29 0.29 0.78 0.88 

 

G. Discussion 

The primary objective of this study was to explore the 
feasibility of developing both manual and automated 
computer models for histopathological prostate image 
segmentation. The goal was to investigate whether image 
patches could be utilized to mimic the pathologist’s 
procedure and aid in accurately defining the gland and 
stroma components of histopathological prostate images, 
thereby assisting in the diagnosis of PCa. Various models 
were evaluated, including hybrid features using GLCM 
and LBP, as well as the U-Net model, with the Jaccard and 
Dice indices used for performance comparison. These 
descriptors were employed to encode the textural 
information associated with the gland and stroma 
components. Specifically, the GLCM was used to 
calculate a co-occurrence matrix, providing information 
about the glands and stroma at various orientations, while 
the LBP was utilized to extract local intensity changes of 
the gland and stroma candidates. 

The results demonstrated that the best accuracy was 
achieved using the GLCM at (δ = 1, θ = 0) and the LBP at 
r = 1, when employing an SVM classifier, yielding 
accuracy results of 99.0% and 95.1%, respectively, with 

20-fold cross-validation. The combined hand-crafted 
model had an approximate training time of 2 minutes, both 
for training the model and performing image segmentation. 
However, despite the high classification accuracy, the 
hand-crafted models did not accurately delineate the 
segmentation boundary between the gland and stroma in 
the image patches. In contrast, the U-Net model, despite its 
longer training time of approximately 15 hours, achieved 
remarkable segmentation results even with a small training 
dataset. When tested on four histopathological images, the 
U-Net model outperformed the hand-crafted models, 
producing remarkable Jaccard and Dice index results, as 
presented in Table II. To improve readability, the 
fractional Jaccard Index and Dice similarity values were 
converted to percentage ratios. 

Our results indicate significant differences between the 
hand-crafted (GLCM and LBP) and machine-driven (U-
Net) approaches. Hand-crafted methods rely on predefined 
texture features, which can effectively capture specific 
patterns in prostate tissues. However, these methods may 
miss more complex patterns that U-Net, with its deep 
learning capabilities, can identify. U-Net’s longer training 
time allows it to learn from data comprehensively, leading 
to superior segmentation quality but also requiring more 
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computational resources. Therefore, the U-Net model’s 
extended training time is crucial for achieving high 
accuracy, as longer training times enable the model to 
learn intricate patterns within the data, which improves 
segmentation results. However, this also raises concerns 
about computational costs and the potential for overfitting, 
particularly with smaller datasets. Extended work can 
focus on optimizing training processes and exploring 
techniques to reduce computational demands without 
sacrificing accuracy. Furthermore, investigating the 
generalizability of our approach to other types of cancer is 
a promising direction for future research. Preliminary 
experiments indicate potential applicability, which could 
enhance diagnostic tools across various cancer types. 

Accordingly, results suggest that the U-Net model is the 
most effective for image segmentation and has the 
potential to assist pathologists in identifying early stages 
of Gleason grades of PCa, particularly in resource-
constrained settings such as rural clinics, where limited 
clinical practitioners, infrastructure, and the unavailability 
of pathology services, along with missing historical data 
for many patients, are common challenges. This research 
could have significant clinical implications, including 
aiding pathologists in diagnosing prostate cancer more 
efficiently and accurately. Automated segmentation can 
reduce inter-observer variability and provide reliable 
diagnostic support, particularly in regions with limited 
healthcare resources. However, it is important to note that 
the limitation of the present work lies in the limited 
representational ability of hand-crafted features to handle 
significant variations in the anatomical shape’s appearance. 
To complement domain knowledge and achieve better 
segmentation results, the utilization of other engineering 
hand-crafted models could be explored. Additionally, the 
proposed hand-crafted feature extraction methods were 
limited to grayscale images, and further investigation into 
other color models could potentially improve 
segmentation performance. Furthermore, exploring 
alternative loss functions could be beneficial in training the 
U-Net model when dealing with limited data scenarios. 
Finally, the use of machine learning for prostate cancer 
identification offers significant benefits but may raises 
ethical concerns. Therefore, it is essential to use diverse 
and representative datasets, and involve healthcare 
providers in the development and training processes. 

V. CONCLUSIONS  

This paper addresses the challenge of segmenting gland 
and stroma tissues in histopathological prostate images 
using a combination of handcrafted and semantic image 
segmentation techniques. The performance of various 
models, including hybrid features using GLCM and LBP, 
as well as the U-Net model, was evaluated and compared 
using the Jaccard and Dice indices. Remarkably, the U-Net 
model surpassed the handcrafted models in accurately 
segmenting gland and stroma regions. To enable automatic 
gland and stroma image segmentation, an online tool was 
developed based on the best trained model. Moving 
forward, enhancing performance by augmenting the image 
size in the training dataset and extending the model to 

handle whole-slide image segmentation are important 
future directions. Moreover, exploring architectural 
improvements, such as incorporating residual block 
connections and investigating alternative deep learning 
frameworks, can advance medical image segmentation 
beyond the standard U-Net architecture. 
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