
An Optimized CNN Architecture for Accurate 

3D Liver Segmentation in Medical Images  

Hersatoto Listiyono 1,*, Zuly Budiarso 2, and Agus Perdana Windarto 3

1 Faculty of Vocational Studies, Universitas Stikubank, Semarang, Indonesia 
2 Faculty of Information Technology and Industry, Universitas Stikubank, Semarang, Indonesia  

3 Information Systems Program, STIKOM Tunas Bangsa, Pematangsiantar, Indonesia 

Email: hersatotolistiyono@edu.unisbank.ac.id (H.L.); zulybudiarso@edu.unisbank.ac.id (Z.B.); 

agus.perdana@amiktunasbangsa.ac.id (A.P.W.) 

*Corresponding author

Abstract—Medical image segmentation is a crucial 

component in diagnostic and therapeutic processes, enabling 

precise analysis of anatomical structures to improve clinical 

outcomes. The liver is a particularly significant organ due to 

its multifaceted functions and its role in various 

physiological processes. Accurate segmentation of the liver 

from medical images is essential for disease diagnosis, 

treatment planning, and surgical interventions. This study 

used liver tumor segmentation data of 65 (Computed 

Tomography) CT scan datasets. However, challenges in 3D 

liver segmentation include heterogeneous textures, varying 

shapes, and proximity to neighboring structures, 

necessitating advanced techniques to enhance accuracy and 

efficiency. This study utilizes the dataset from the Liver 

Tumor Segmentation Challenge (LiTS), which includes 

contrast-enhanced abdominal CT scans from various 

clinical sites worldwide. The research proposes an optimized 

Convolutional Neural Networks (CNN) architecture, 

DeepLabV3+ (Proposed), which integrates atrous 

convolution with Atrous Spatial Pyramid Pooling (ASPP) 

and low-level feature fusion. The results indicate that the 

DeepLabV3+ model achieves the best performance, with an 

Intersection over Union (IoU) of 0.68 and a Dice Similarity 

Coefficient (DSC) of 0.84. The implication is that this model 

can significantly enhance liver segmentation accuracy in 

clinical practice, thereby improving the quality of patient 

diagnosis and treatment.   

Keywords—3D liver segmentation, deep learning, 

DeepLabV3+, Atrous Spatial Pyramid Pooling (ASPP), 

LiTS dataset 

I. INTRODUCTION

Medical image segmentation plays a pivotal role in 

diagnostic and therapeutic pro-cesses, enabling precise 

analysis of anatomical structures for improved clinical 

out-comes. Among the vital organs, the liver holds 

particular significance due to its multi-faceted functions 

[1–3]. Accurate segmentation of the liver from medical 

images is crucial for various applications, including 

disease diagnosis, treatment planning, and surgical 

interventions. Medical image segmentation has witnessed 

transformative advancements with the integration of 

Manuscript received May 26, 2024; revised July 24, 2024; accepted 

August 21, 2024; published January 17, 2025.

Artificial Intelligence (AI) and deep learning 

techniques [4, 5]. In particular, Convolutional Neural 

Networks (CNNs) have emerged as a groundbreaking 

solution for automating the intricate process of organ 

segmentation in medical images. This article addresses 

the critical challenge of accurate 3D liver segmentation 

through the proposition and evaluation of an optimized 

CNN architecture, taking advantage of the expansive 

capabilities offered by AI and deep learning [6, 7]. 

Challenges in Liver Segmentation, despite 

advancements in medical imaging technologies, liver 

segmentation remains a challenging task. The inherent 

complexities arise from the liver’s heterogeneous texture, 

varying shapes, and proximity to neigh-boring structures. 

Traditional segmentation methods often struggle to 

provide the required precision, especially in the context 

of Three-Dimensional (3D) imaging. As a result, there is 

a pressing need for advanced techniques to enhance the 

accuracy and efficiency of liver segmentation [8, 9]. Role 

of Deep Learning in Liver Segmentation, with its ability 

to automatically learn hierarchical representations, has 

proven to be particularly effective in the context of organ 

segmentation. The intricacies of liver segmentation, 

especially in three-dimensional space, necessitate a model 

capable of discerning subtle variations and intricate 

structures within the medical images. CNNs, a subset of 

deep learning architectures, have demonstrated 

remarkable success in this domain, prompting exploration 

for further optimization to cater to the specific challenges 

of 3D liver segmentation. Role of Convolutional Neural 

Networks (CNNs) in recent years, Convolutional Neural 

Networks (CNNs) have emerged as a powerful tool in 

medical image analysis. Their ability to automatically 

learn hierarchical features makes them well-suited for 

complex tasks like organ segmentation. However, the 

design of an optimal CNN architecture specifically 

tailored for 3D liver segmentation demands careful 

consideration [8, 10–13]. 

The Convolutional Neural Network (CNN) 

architecture consists of several layers specifically 

designed for pattern recognition tasks on spatial data, 

such as images. CNN architectures often follow a pattern 

consisting of some combination of the above layers, 
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which may be repeated any number of times. Some well-

known CNN architectures include LeNet [14–17], 

AlexNet [3, 14, 18–22], VGGNet [18, 23–25], 

GoogLeNet (Inception) [2, 26, 27], ResNet [24, 26, 28, 

29], and many more. Each architecture can have specific 

variants or adjustments for specific tasks. 

In a previous study conducted by Anil [28] the 

proposed model (MDCN + FRN) was evaluated on CT 

images of 125 patients from the TCI dataset and achieved 

dice similarity with an average of 0.89 in training and 

dice similarity with an average of 0.86 in testing. 

Compared to other segmentation methods, the 

experiments conducted show better performance of the 

proposed method. The study suggests several avenues for 

future research to enhance the proposed methodology, 

explore the impact of using larger and more diverse 

datasets to improve the model’s generalization 

capabilities and investigate the potential benefits of fine-

tuning the model on specific datasets or applying transfer 

learning from related medical imaging tasks. 

Meanwhile, in the next research carried out by 

Wang [29] In their paper, they introduced the 

TransFusionNet framework, which consists of a semantic 

feature extraction module, a local spatial feature 

extraction module, an edge feature extraction module, 

and a multi-scale feature fusion module to achieve fine 

segmentation of tumors and liver blood vessels. In 

addition, they applied a transfer learning approach to pre-

train using public datasets and then fine-tune the model to 

further improve the fitting effect. Additionally, they 

proposed an intelligent quantization scheme to compress 

model weights and achieve high performance inference 

on JetsonTX2. The TransFusionNet framework achieved 

an average IoU of 0.854 in the blood vessel segmentation 

task, and achieved an average IoU of 0.927 in the liver 

tumor segmentation task. 

The study by Wang et al. [30] focuses on developing 

an improved Deeplabv3+ model for liver segmentation in 

CT images. The primary goal is to enhance the accuracy 

of liver segmentation. The researchers modified the 

Deeplabv3+ architecture to better handle the complexity 

of liver structures and their proximity to other organs. 

The results showed that the enhanced model achieved 

higher segmentation accuracy compared to traditional 

methods, with better metrics such as Dice Similarity 

Coefficient (DSC) and Intersection over Union (IoU). 

This model successfully distinguished the liver from 

surrounding structures, despite challenges like 

heterogeneous textures and varying liver shapes. 

However, the study has some limitations. The dataset 

used may lack diversity, which could affect the model’s 

ability to generalize to new data. Additionally, the 

improvements increase computational complexity, 

making it potentially less suitable for real-time clinical 

applications on devices with limited resources. The 

model might also require further adjustments to be 

applied to other organs or pathologies, and there is a risk 

of overfitting when trained on a small dataset. 

Existing Approaches and Limitations on several 

studies have explored CNN-based approaches for liver 

segmentation, each introducing unique architectures and 

methodologies, such as DeepLabV3. DeepLabv3 excels 

in semantic image segmentation through its use of atrous 

convolution, which expands the receptive field to capture 

multi-scale contextual information without increasing 

computational costs [31]. This technique allows the 

model to maintain image resolution while effectively 

extracting detailed features, crucial for accurate 

segmentation of complex images. Additionally, the 

Atrous Spatial Pyramid Pooling (ASPP) module enhances 

the model’s ability to process spatial information across 

various scales, improving segmentation accuracy for 

objects of different sizes [32]. Furthermore, DeepLabv3 

is highly adaptable, integrating easily with various 

backbone networks like ResNet to boost performance and 

efficiency [33]. This flexibility and effectiveness make 

DeepLabv3 a popular choice for applications requiring 

precise segmentation, such as medical imaging and 

autonomous driving. However, existing models often face 

limitations, such as high computational costs, suboptimal 

accuracy, or challenges in generalization across diverse 

datasets. Addressing these issues requires a focused effort 

to optimize the CNN architecture specifically for accurate 

3D liver segmentation [18, 34–36]. 

Research Gap and Objectives this ris recognizing the 

existing gaps in the literature, this article aims to propose 

and evaluate an optimized CNN architecture tailored for 

3D liver segmentation in medical images. The primary 

objectives include enhancing segmentation accuracy, 

minimizing computational overhead, and ensuring robust 

performance across diverse datasets. By addressing these 

aspects, the proposed model strives to contribute 

significantly to the field of medical image analysis, 

ultimately benefiting clinical practice and patient 

care [19, 20]. 

While CNNs have proven effective in medical image 

segmentation, their generic architectures may not be 

optimized for the intricacies of 3D liver segmentation. 

This article recognizes the significance of tailoring the 

CNN architecture to the specific requirements of liver 

segmentation, aiming to strike a balance between 

precision and computational efficiency. The optimization 

process involves fine-tuning the network to enhance its 

ability to discern liver boundaries and internal structures 

accurately. And even though optimizing CNNs has 

shown to be successful, there are still some difficulties in 

the process. The performance of these refined models is 

largely dependent on model optimization, which is one of 

the main concerns. A key component of CNN fine-tuning, 

model optimization techniques seek to balance 

minimizing overfit-ting and enhancing generalization. 

This comparative analysis article dives into a thorough 

examination of these techniques in order to address the 

challenges related to model optimization for fine-tuned 

CNN models [34–37]. 

In conclusion, the article sets the stage for an in-depth 

exploration of the challenges in 3D liver segmentation, 

highlighting the role of CNNs and the need for a 

specialized architecture. The subsequent sections of the 

article can delve into the methodology, experimental 
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setup, results, and discussions, providing a 

comprehensive understanding of the proposed optimized 

CNN architecture’s effectiveness in achieving accurate 

3D liver segmentation. 

II. RESEARCH METHOD 

This research was conducted to analyze comparative 

model optimization techniques of CNN models for 

Accurate 3D Liver Segmentation in Medical Images. 

From the segmentation results, the data is useful for 

obtaining information on comparative analysis of CNN 

model optimization techniques. 

A. Dataset 

Liver cancer ranks as the fifth most common cancer in 

men and the ninth in women, with over 840,000 new 

cases reported in 2018. The liver frequently hosts primary 

or secondary tumors. Due to the tumors’ heterogeneous 

and diffuse nature, automatic segmentation of these 

lesions poses a significant challenge. To address this, we 

advocate for the advancement of automatic segmentation 

algorithms to accurately segment liver lesions in contrast-

enhanced abdominal CT scans. This dataset, including 

data and segmentations from various clinical sites 

worldwide, was sourced from the LiTS-Liver Tumor 

Segmentation Challenge (LiTS17), held in conjunction 

with ISBI 2017 and MICCAI 2017. 

The displayed image consists of three panels (Fig. 1), 

each showing different stages in the processing of a 

contrast-enhanced CT scan of the liver. The first panel on 

the left shows the original image from the liver CT scan, 

which is the result of scanning without additional 

processing. This image displays the internal structure of 

the abdomen, including the liver and other internal organs 

with various levels of contrast. The middle panel shows 

an image that has been processed using the “windowing” 

technique, which adjusts the grayscale of the image to 

enhance the visibility of certain structures. With the 

windowing technique, the details of the organs and 

tissues within the abdomen become clearer, facilitating 

the identification of structures such as blood vessels and 

tumor lesions. The panel on the right shows a 

segmentation mask produced from the CT scan image. 

This mask highlights specific areas in the image, in this 

case likely tumor lesions in the liver. The highlighted 

areas indicate the location and shape of the identified 

tumor lesions. 

 

 

Fig. 1. Model optimization flowchart. 

B. Proposed Method 

Train a Convolutional Neural Network (CNN) using 

different optimization optimizers for comparison with 

different batch sizes. Here the author uses a popular deep 

learning framework such as TensorFlow for this task. We 

present the Convolutional Neural Network (CNN) Model 

Optimization flowchart in Fig. 2 and Table I. We can 

analyze its architecture and its potential advantages in 

image segmentation tasks. The model begins with an 

input layer that takes images of size 224×224×3. It then 

applies an initial convolutional layer with a 7×7 filter and 

64 filters, followed by a max pooling layer to reduce the 

spatial dimensions. The network consists of several 

convolutional blocks. The first block includes two 3×3 

convolutional layers with 64 filters and a 1×1 

convolutional layer with 256 filters. The second block 

uses two 3×3 convolutional layers with 128 filters and a 

1×1 convolutional layer with 512 filters. The third block 

consists of two 3×3 convolutional layers with 256 filters 

and a 1×1 convolutional layer with 1024 filters, while the 

fourth block has two 3×3 convolutional layers with 512 

filters and a 1×1 convolutional layer with 2048 filters. 

 

  

Fig. 2. Proposed method. 
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TABLE I. DEEPLABV3+ (PROPOSED) LAYER STRUCTURE 

Layer (type) Output Shape 

InputLayer (224, 224, 3) 

Conv2D (7×7, 64 filters, stride 2) (112, 112, 64) 

MaxPooling2D (3×3, stride 2) (56, 56, 64) 

Conv2D Block 1  

- Conv2D (3×3, 64 filters) (56, 56, 64) 

- Conv2D (3×3, 64 filters) (56, 56, 64) 

- Conv2D (1×1, 256 filters) (56, 56, 256) 

Conv2D Block 2  

- Conv2D (3×3, 128 filters) (28, 28, 128) 

- Conv2D (3×3, 128 filters) (28, 28, 128) 

- Conv2D (1×1, 512 filters) (28, 28, 512) 

Conv2D Block 3  

- Conv2D (3×3, 256 filters) (14, 14, 256) 

- Conv2D (3×3, 256 filters) (14, 14, 256) 

- Conv2D (1×1, 1024 filters) (14, 14, 1024) 

Conv2D Block 4  

- Conv2D (3×3, 512 filters) (7, 7, 512) 

- Conv2D (3×3, 512 filters) (7, 7, 512) 

- Conv2D (1×1, 2048 filters) (7, 7, 2048) 

ASPP (Atrous Spatial Pyramid 

Pooling) 
 

Upsample (×4) (112, 112, 256) 

Low-Level Features  

- Conv2D (1×1, 48 filters) (112, 112, 48) 

- Concatenate with high-level 

features 
 

Conv2D Block  

- Conv2D (3×3, 256 filters) (112, 112, 256) 

- Conv2D (3×3, 256 filters) (112, 112, 256) 

Upsample (×2) (224, 224, 256) 

Conv2D (1×1, 21 filters) (224, 224, 21) 

Softmax (224, 224, 21) 

Output Layer (224, 224, 21) 

 

The Atrous Spatial Pyramid Pooling (ASPP) layer 

captures multi-scale contextual information by applying 

atrous convolution with different rates, enhancing the 

model’s ability to recognize objects of various sizes. 

Following ASPP, the features are upsampled by a factor 

of 4. The model then extracts low-level features using a 

1×1 convolutional layer with 48 filters, which are 

concatenated with high-level features from the ASPP 

layer. This fusion allows the model to leverage fine-

grained details crucial for accurate segmentation. 

Another convolutional block processes the 

concatenated features with two 3×3 convolutional layers 

with 256 filters. The features are then upsampled by a 

factor of 2 to restore the original spatial dimensions. 

Finally, a 1×1 convolutional layer with 21 filters 

(corresponding to the number of classes) is applied, 

followed by a softmax activation to produce class 

probabilities for each pixel. The output layer generates 

the final segmentation map of size 224×224×21. 

The proposed method offers several advantages, 

including the ability to capture multi-scale contextual 

information through ASPP and the fusion of low-level 

and high-level features, which enhances the model’s 

accuracy. These architectural enhancements result in 

superior performance metrics such as IoU, DSC, accuracy, 

precision, recall, and F1-score, making DeepLabV3+ 

(Proposed) a robust choice for high-accuracy image 

segmentation tasks. The efficient use of convolutional 

layers and upsampling techniques also ensures 

computational feasibility, providing a balance between 

complexity and performance. 

DeepLabV3+ (Proposed) (Tables II and III) provides a 

state-of-the-art solution for image segmentation tasks. Its 

advanced architectural components, including atrous 

convolution, ASPP, and low-level feature fusion, 

contribute to its superior performance. This makes 

DeepLabV3+ a robust and reliable choice for high-

accuracy segmentation applications. 

TABLE II. SUMMARY TABLE OF MODEL COMPARISON 

Feature VGG16 AlexNet ResNet-50 MobileNet 

Architecture Convolutional Convolutional Residual 
Depthwise 

Separable 

Input Size 224×224×3 227×227×3 224×224×3 224×224×3 

Core Layers Conv, FC Conv, FC 
Conv, Res 

Blocks 

Depthwise 

Conv, FC 

Special 

Features 

Deep, simple 

layers 
Early CNN 

Residual 

connections 
Lightweight 

TABLE III. SUMMARY TABLE OF MODEL COMPARISON (CONTINUED) 

Feature 
GoogLeNet 

(Inception v1) 
DeepLabV3 

DeepLabV3+ 

(Proposed) 

Architecture 
Inception 

Modules 

Atrous 

Convolution 

Atrous Convolution + 

ASPP 

Input Size 224×224×3 224×224×3 224×224×3 

Core Layers 
Conv, Inception 

Blocks 
Conv, ASPP 

Conv, ASPP, Low-

Level Features, 

Upsampling 

Special 

Features 

Multi-scale 

feature 

extraction 

Contextual 

information 

Contextual information 

+ Low-Level Feature 

Fusion 

 

C. Research Framework 

Train a Convolutional Neural Network (CNN) using 

different optimization optimizers for comparison with 

different batch sizes. Here the author uses a popular deep 

learning framework such as TensorFlow for this task. We 

present the Convolutional Neural Network (CNN) Model 

Optimization flowchart in Fig. 1 below: 

  

Fig. 3. Research framework. 

The provided research framework flowchart (Fig. 3) 

outlines a comprehensive approach for evaluating 

multiple deep learning models for liver tumor 

segmentation, including the proposed DeepLabV3+ 

model. The process begins with the identification of the 
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problem, establishing the significance of accurately 

segmenting liver tumors and the necessity of evaluating 

various deep learning models to find the most effective 

solution. 

The literature review phase involves an in-depth 

examination of existing models used in similar tasks, 

selecting VGG16, AlexNet, ResNet, MobileNet, 

GoogLeNet, DeepLabV3, and the proposed DeepLabV3+ 

for evaluation. This diverse selection ensures a broad 

comparison across different architectures. 

Data collection is the next critical step, where the Liver 

Tumor dataset from Kaggle is gathered. The data 

undergoes normalization to a standard scale, 

augmentation to increase diversity, and splitting into 

training and testing sets. This preparation ensures the 

dataset is suitable for effective training and evaluation. 

The model training phase involves training each 

selected model (VGG16, AlexNet, ResNet, MobileNet, 

GoogLeNet, DeepLabV3, and DeepLabV3+) with the 

prepared dataset. This phase is crucial for each model to 

learn and make accurate predictions. 

Model evaluation follows, where each trained model is 

tested on the test dataset. Key performance metrics such 

as Intersection over Union (IoU), Dice Similarity 

Coefficient (DSC), accuracy, precision, recall, and F1-

Score are recorded. These metrics provide quantitative 

measures of each model’s performance. Here are the 

formulas for calculating Intersection over Union (IoU), 

Dice Similarity Coefficient (DSC), and performance 

evaluation metrics such as Accuracy, Precision, Recall, 

and F1-Score. 

 

IoU =
∣A∪B∣

∣A∩B∣
                                 (1) 

DSC =
2×∣A∩B∣

∣A∣+∣B∣
                             (2) 

Accuracy =
TP+TN

TP+TN+FP+FN
                   (3) 

Precision =
TP

TP+FP
                               (4) 

Recall =
TP

TP+FN
                               (5) 

F1 − Score =
2×Precision×Recall

Precision+Recall
                   (6) 

 

The results visualization phase enhances understanding 

and comparison by creating confusion matrices and 

plotting training and validation metrics. These visual aids 

facilitate the comparison of model performances. During 

the analysis phase, the performance of all evaluated 

models is compared to identify the best-performing 

model, expected to be DeepLabV3+ (Proposed). This 

phase highlights the model with superior performance 

metrics, providing a basis for the conclusion. 

Finally, the conclusion summarizes the findings from 

the analysis, discussing the performance of the best 

model and its implications for future research and 

practical applications. The DeepLabV3+ method, with its 

enhanced architecture combining Atrous Convolution 

with ASPP and low-level feature fusion, is anticipated to 

outperform other models in key performance metrics, 

offering a robust solution for liver tumor segmentation in 

medical diagnostics. 

III. RESULT AND DISCUSSION 

Based on the training results, validation results and 

testing results using different hyperparameters and 

architectures to see the image segmentation results on 

liver image segmentation. 

A. Result 

The provided visualizations offer a detailed 

comparison of training and validation loss and accuracy 

across several deep learning models during the training 

process, specifically focusing on LeNet, AlexNet, 

VGG16, ResNet, GoogleNet, MobileNet, DeepLabV3, 

and DeepLabV3+ (Proposed). These graphs are crucial 

for understanding how each model learns and generalizes 

based on the provided training data over ten epochs. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 
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(f) 

 
(g) 

 
(h) 

Fig. 4. Training process comparison. (a) LeNet; (b) AlexNet; (c) 

VGG16; (d) ResNet; (e) GoogleNet; (f) MobileNet; (g) DeepLabV3; (h) 

DeepLabV3+ (Proposed). 

 

For all models (Fig. 4), the training loss graphs 

demonstrate a decreasing trend, indicating effective 

learning from the training data. However, the validation 

loss trends differ, with some models showing increases in 

validation loss in later epochs, which could signal 

overfitting. Notably, simpler or older architectures like 

LeNet, AlexNet, and VGG16 exhibit higher validation 

losses, which may point to their limitations in capturing 

more complex patterns efficiently. 

Conversely, newer or more advanced architectures 

such as ResNet, MobileNet, and GoogleNet display a 

better grip on overfitting, as evidenced by their relatively 

stable validation losses. Among these, GoogleNet and 

MobileNet are particularly effective, maintaining stable 

validation losses and showing excellent model robustness. 

The accuracy graphs provide further insights. LeNet 

shows lower performance compared to more 

contemporary models, likely due to its simpler structure. 

AlexNet and VGG16, while offering reasonable 

accuracies, experience significant fluctuations in 

validation accuracy, suggesting potential instability or 

overfitting issues. ResNet and MobileNet showcase 

higher and more consistent accuracies, with MobileNet 

slightly outperforming ResNet in the later epochs. 

The standout performers in terms of both training and 

validation accuracy are DeepLabV3 and DeepLabV3+ 

(Proposed). Both achieve high accuracies, with the 

proposed DeepLabV3+ model maintaining a higher 

validation accuracy throughout the training process. This 

indicates not only its superior learning capabilities but 

also its consistency and effectiveness in generalizing well 

to new data. The advanced models like DeepLabV3+, 

GoogleNet, and MobileNet demonstrate a superior 

balance between learning from training data and 

generalizing to validation data, with DeepLabV3+ 

showing exceptional potential 

B. Discussion 

The bar chart comparing the Intersection over Union 

(IoU) and Dice Similarity Coefficient (DSC) metrics for 

different models (Table IV and Fig. 5) provides valuable 

insights into their performance in liver tumor 

segmentation tasks. Among the evaluated models, the 

proposed DeepLabV3+ model stands out, exhibiting the 

highest performance with an IoU of 0.68 and a DSC of 

0.84. These metrics indicate superior segmentation 

accuracy, making DeepLabV3+ the most effective model 

in this comparison. 

TABLE IV.  MODEL PERFORMANCE METRICS (IOU AND DSC) 

Model IoU DSC 

VGG16 0.57 0.72 

AlexNet 0.55 0.71 

Resnet 0.57 0.73 

MobileNet 0.58 0.74 

GoogleNet 0.59 0.75 

DeepLabV3 0.60 0.76 

DeepLabV3_Plus (Proposed) 0.68 0.84 

 

 
Fig. 5. The graph comparing the Intersection over Union (IoU) and Dice 

Similarity Coefficient (DSC) metrics for the different models. 
 

The DeepLabV3 model also shows strong performance 

with an IoU of 0.60 and a DSC of 0.76, highlighting the 

effectiveness of the DeepLab architecture. GoogleNet 

achieves an IoU of 0.59 and a DSC of 0.75, positioning it 

as one of the top-performing models among those 

evaluated. MobileNet follows closely with an IoU of 0.58 

and a DSC of 0.74, demonstrating good performance but 

slightly below GoogleNet and DeepLabV3. 

Resnet, AlexNet, and VGG16 show moderate 

performance with IoU and DSC values ranging from 0.55 

to 0.73. These models, while effective, do not match the 

superior performance of the DeepLab variants. The 

proposed DeepLabV3+ model significantly outperforms 

other models in both IoU and DSC metrics, making it the 

best choice for liver tumor segmentation. 

TABLE V. MODEL PERFORMANCE METRICS  

Model Accuracy Precision Recall F1-Score 

VGG16 0.969 0.611 0.892 0.725 

AlexNet 0.967 0.600 0.890 0.720 

Resnet 0.968 0.610 0.900 0.730 

MobileNet 0.969 0.620 0.910 0.740 

GoogleNet 0.970 0.630 0.920 0.750 

DeepLabV3 0.971 0.640 0.930 0.760 

DeepLabV3_Plus (Proposed) 0.980 0.720 0.960 0.820 
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Fig. 6. The graph comparing the Metrics (Accuracy, Precision, Recall, 

F1-Score) for the different models. 
 

The bar chart above compares the performance metrics 

of the models, specifically accuracy, precision, recall, and 

F1-Score, for various models evaluated in the liver tumor 

segmentation task (Table V and Fig. 6). The 

DeepLabV3+ (Proposed) model demonstrates the best 

performance with an accuracy of 0.98, precision of 0.72, 

recall of 0.96, and an F1-Score of 0.82, indicating its 

superior segmentation capability. The DeepLabV3 model 

also shows excellent performance with an accuracy of 

0.971, precision of 0.64, recall of 0.93, and an F1-Score 

of 0.76. GoogleNet achieves an accuracy of 0.97, 

precision of 0.63, recall of 0.92, and an F1-Score of 0.75, 

making it one of the top-performing models among those 

evaluated. 

MobileNet shows good performance with an accuracy 

of 0.969, precision of 0.62, recall of 0.91, and an F1-

Score of 0.74, though slightly below GoogleNet and 

DeepLabV3. Meanwhile, Resnet, AlexNet, and VGG16 

show moderate performance with accuracy and other 

metrics ranging from 0.967 to 0.73. While effective, these 

models do not match the superior performance of the 

DeepLab variants. 

The proposed DeepLabV3+ model significantly 

outperforms other models in accuracy, precision, recall, 

and F1-Score metrics, making it the best choice for liver 

tumor segmentation. The high performance of the 

DeepLabV3 model further validates the strength of the 

DeepLab architecture. Other models such as GoogleNet 

and MobileNet show competitive performance, though 

they fall short compared to the DeepLab variants. This 

comparison highlights the advantage of using advanced 

segmentation models like DeepLabV3+ to achieve higher 

accuracy and better segmentation quality in medical 

imaging tasks. 

The Confusion Matrix visualization (Fig. 7) above 

provides a clear overview of the performance of various 

deep learning models, including VGG16, AlexNet, 

ResNet, MobileNet, GoogLeNet, DeepLabV3, and 

DeepLabV3+ (Proposed). From the visualizations, it is 

evident that the DeepLabV3+ (Proposed) model exhibits 

the best performance among all models. This model 

demonstrates highly accurate predictions across all 

classes with minimal errors, making it the most reliable 

model for this classification task. 

Both GoogLeNet and ResNet models also show very 

good performance with only minor prediction errors, 

particularly in Classes 1 and 2. The VGG16 model is 

fairly consistent with minimal errors, although it has a 

few mispredictions in class 1. MobileNet, while having 

some errors in Class 1, still shows accurate predictions in 

Class 2. 
 

 
Fig. 7. Prediction results of all models with multiple images. 

 

On the other hand, the AlexNet model appears less 

consistent compared to the other models, with several 

mispredictions in Classes 1 and 2. The DeepLabV3 

model displays good performance but still has some 

errors in Class 1. Overall, the DeepLabV3+ (Proposed) 

model stands out as the best model, followed by 

GoogLeNet and ResNet, which also exhibit solid 

performance. 

IV. CONCLUSION 

This article highlights the role of Convolutional Neural 

Networks (CNNs) and the necessity for specialized 

architectures tailored to the specific challenges of 3D 

liver segmentation. The DeepLabV3+ (Proposed) model 

demonstrates the best performance in liver tumor 

segmentation, excelling in metrics such as accuracy, 

precision, recall, and F1-Score. This model combines 

atrous convolution with Atrous Spatial Pyramid Pooling 

(ASPP) and low-level feature fusion to provide a robust 

and reliable solution for high-accuracy image 

segmentation tasks. Compared to other models like 

GoogLeNet, MobileNet, and ResNet, DeepLabV3+ 

shows outstanding potential in generalizing to new data 

and effectiveness in handling validation data, making it 

the top choice for liver tumor segmentation. 

However, this study has some limitations. One 

limitation is the dataset size used, which, although varied, 

may not capture the full diversity present in the global 

population. Additionally, the model still requires 

significant computational resources, which could be a 

challenge when implementing it in clinical environments 

with limited resources. 
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For future research, it is recommended to explore the 

use of larger and more diverse datasets to enhance the 

model’s generalization capabilities. Further research 

could focus on developing model compression and 

optimization techniques that can reduce computational 

costs without sacrificing accuracy. Implementing and 

testing this model in real clinical settings will also 

provide additional insights into its benefits and challenges 

in practical applications. 
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