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Abstract—Pneumonia and tuberculosis are crucial reasons 
for infection and mortality worldwide, making lung illnesses 
a first-rate international fitness problem. Appropriate and 
active prognosis of those ailments is important for a 
successful remedy and for the care of the affected person. 
Because there are numerous similarities between lung 
illnesses and versions inside an unmarried condition, it may 
be tough to as it should be diagnosing lung illnesses. In this 
project, we endorse a singular technique to lung da sickness 
class method that divides lung X-ray pictures into 3 groups: 
“No Findings,” “Pneumonia,” and “Tuberculosis.” It does 
this by combining the energy of Visual Geometry Group 
(VGG) and Spatial Transform Network (STN). To capitalize 
on those neural community architectures` complementing 
advantages, our hybrid technique combines both. From the 
lung X-ray pictures, the VGG extracts low-degree features, 
that are in the end processed with the aid of using the Spatial 
Transform Network to gain extra complex correlations and 
contextual data among those features. We implemented a 
dataset of 12,856 chest X-rays to refine our model. On this 
dataset, we attained an accuracy of 94.59% implementing the 
technique we proposed. This shows how well our approach 
works for correctly identifying lung conditions from X-ray 
scans.  

Keywords—Visual Geometry Group (VGG), Spatial 
Transform Network (STN), X-ray, Tuberculosis, Pneumonia, 
lung disease classification 

I. INTRODUCTION

Lung illnesses have become a first-rate worldwide 
fitness concern, with prices of morbidity and mortality 
growing dramatically on a worldwide scale. A fast and 
unique prognosis is vital for green remedy and affected 
person care in instances together with tuberculosis and 
pneumonia. The heterogeneity within a single disease and 
the complex nature of lung illnesses spotlight how tough it 
is to make a correct prognosis. To cope with this diagnostic 
difficulty, our challenge integrates Spatial Transform 
Networks (STN) with Visual Geometry Group (VGG) 
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structure to offer a singular technique for lung 
contamination classification.  

Our hybrid model is significant because it can take 
advantage of the unique benefits of both VGG and STN. 
An important stage in the analysis of lung X-ray pictures 
is extracting low-level properties from complex images, 
and here is where VGG shines. However, the lack of 
contextualizing information and the detailed relationships 
of these qualities are resolved by adding STNs that Spatial 
Transform Networks concern. The hybrid model we use 
incorporates a large number of STNs, ensuring more 
precise relationships in the different properties of the lung 
X-ray picture and enabling a more hierarchical approach
to features captured by VGG.

Our adjusted approach classifies lung X-ray pictures as 
“No Findings,” “Pneumonia,” and “Tuberculosis.” This 
three-tier classification method tackles the intricate nature 
of lung illnesses, presenting a more precise and focused 
diagnostic method. The hybrid VGG-STN model creates a 
strong combination of feature extraction and spatial 
transformation synergies to ensure that lung X-ray pictures 
are comprehensively analyzed. 

To summarize, the hybrid model that uses VGG-STN 
architecture has the potential to disrupt the conventional 
method of lung disease diagnosis. It enables better 
diagnostic accuracy by analyzing complex information 
from perspective photographs in a structured manner. 
Although the hybrid method has high potential, issues of 
data accessibility, computational complexity, and 
compatibility need to be addressed. However, the hybrid 
model of VGG-STN is a significant development in the 
effort to find better precise, optimal, and reliable 
diagnostic techniques to detect lung disorders. 

II.  LITERATURE REVIEW

Rahman et al. [1] also recognize the good CIS 2 
potential of computer-aided diagnosis systems and shed 
light on the important health problem connected with 
Tuberculosis (TB) detection in Chest X-rays (CXR) 
images. Here, deep learning and more specifically 
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convolutional neural networks Convolutional Neural 
Networks (CNNs) are applied to the automatic 
identification of tuberculosis in CXR pictures. To boost the 
accuracy of tuberculosis detection, the authors study 
numerous segmentation techniques and visualization 
methods and several pre-trained CNN models. They 
demonstrate why CNNs are still widely utilized despite 
recent research developments: “CNNs, including the 
VGG-16, played a crucial role by category of virus in 
distinguishing between multiple types of corona viridae 
throughout the COVID-19 pandemic 17”. The authors’ 
research is the first to study two U-net models for CXR 
image segmentation and the use of nine pre-trained CNNs 
for TB diagnosis. Due to the fact the technique offers 
flexibility and stamina, it indicates an accuracy of 98.6% 
when comparing the results from original segmentation 
and lung images. 

Lung illnesses have relevance in the world, keeping in 
mind the current COVID-19 pandemic caused by Severe 
Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-
2) [2]. For early detection, Chest X-rays (CXR) are
frequently utilized because they are faster and more
affordable than CT scans. To achieve accurate lung
segmentation, the paper presents a method using a Multi-
Scale Adversarial Domain Adaptive Network (MS-
AdaNet) and unsupervised lung segregation as previous
knowledge. Then, a set of Multimedia Networks (MA-
Nets) is created to extract features from the original CXR
and correct for differences in lung shape and pixel values.
These features are effectively combined in the proposed
network for COVID-19 screening. Significant
contributions include a lung region-based screening
method, using MS-AdaNet to address domain shift
problems, and leveraging prior lung region information to
demonstrate significant gains in sensitivity. accuracy of
the lung area. MA-Net achieved impressive accuracy and 
F1 scores of 98.83% and 98.71%, respectively. 

Ayan and Ünver [3] use chest X-rays to diagnose the 
disease. However, subjectivity develops because the 
presentation is unclear or can be misinterpreted with other 
diseases. To diagnose pneumonia, we used two well-
known convolutional neural network models in this study: 
Xception and Vgg16. We also undertake transfer learning 
and upskilling during training. According to test results, 
the VGG16 network has a higher accuracy than the 
Xception network by 0.87% and 0.82%, respectively. 
Interestingly, although VGG16 showed higher accuracy, 
the Xception network performed better in identifying 
pneumonia cases. This demonstrates the unique 
capabilities of each network on the same dataset, 
highlighting the need to carefully select models for 
specific diagnostic tasks. 

Bharati et al. [4] suggested a novel hybrid deep learning 
architecture known as VGG Data STN with CNN 
(VDSNet), pointing out that the standard CNN had 
drawbacks, particularly when it came to managing odd 
image orientations. Our suggested method combines CNN 
with VGG, data augmentation, and a Spatial Transformer 
Network (STN) to solve issues with slanted or rotated 
images. The VDSNet was implemented and deployed to 

the Kaggle dataset of National Institutes of Health (NIH) 
chest X-ray pictures using Jupyter Notebook, Tensorflow, 
and Keras. For both the entire dataset and the sample 
dataset, VDSNet performs better than earlier techniques in 
terms of precision, recall, F0.5 score, and validation 
accuracy. Modified capsule networks, hybrid CNN and 
VGG, vanilla grayscale, and vanilla Red Green Blue color 
model (RGB) are some of these methods. With validation 
accuracy ratings of 67.8%, 69%, 69.5%, and 63.8% 
VDSNet performs better than other models, obtaining a 
73% validation accuracy throughout the dataset for the 
entire system. VDSNet maintains competitive validation 
accuracy while reducing training time significantly when 
sample data is used. 

Karim et al. [5] explains the difficulties that come with 
deep neural networks, such as the issue of deteriorating 
disappearance, and emphasizes how architectures like 
ResNets, FractalNets, and DenseNets can help by 
establishing connections between the main layers. It 
highlights the shortcomings of conventional (CNNs), such 
as their insensitivity to changes in object position and their 
disregard for spatial relationships within images. A 
solution is offered in the form of the introduction of 
Capsule Networks (CapsNets) by Sabour et al., which 
incorporate routing by agreement and store data at the 
vector level for increased precision. To improve feature 
understanding, the study suggests a modification to the 
CapsNets dubbed Dense Capsule Network (DNet), which 
is inspired by the dense connectedness of layers and has 
direct links between subsequent levels. When compared to 
other models, DNet produces better outcomes in terms of 
depth levels and computing efficiency, demonstrating its 
usefulness. 

Sajed et al. [6] used chest X-ray (CXR) image analysis 
to demonstrate how well deep learning works for 
diagnosing lung diseases. According to PRISMA 
guidelines, an extensive literature search across reputable 
platforms yielded 129 articles from 2018 to 2023. Study 
quality was assessed and ranked based on lung disease 
type, source data, algorithm type, and result parameters. 
There are currently three main types of computer-aided 
sensors: deep learning, hybrid methods, and traditional 
machine learning. It has been demonstrated that trained 
Convolutional Neural Networks (CNNs), such as ResNet, 
VGG, and DenseNet, are highly effective at increasing 
sensitivity and accuracy. According to recent research, 
deep networks perform better when combined with 
powerful machine learning classifiers than when using 
fully connected neural networks alone. In summary, the 
review discusses gaps in the current literature and suggests 
future directions. 

Rahimzadeh and Attar [7] employed a deep neural 
network to categorize X-ray pictures into three categories: 
normal, pneumonia, and COVID-19 utilizing two open-
source datasets with 180 COVID-19 images. They present 
a neural network combining Xception and ResNet50V2, 
introducing unique training methods to address an 
imbalanced dataset. This neural network achieved an 
impressive 99.50% accuracy in identifying COVID-19 and 
an overall average accuracy of 91.4% across all layers. To 
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test the network’s accuracy in the real world, 11,302 
images provide a large dataset. To detect infection in X-
ray images, deep networks, such as Xception and 
ResNet50V2, are highlighted. A convolutional network is 
proposed, which extracts advanced semantic features to 
increase classification accuracy. 

Babic et al. [8] outlines the creation of a TensorFlow-
based pneumonia detection model that analyzes chest X-
ray pictures to predict whether individuals have 
pneumonia. Using a deep learning algorithm and a CNN, 
the model that is being presented achieves an accuracy rate 
that is more than 95% when analyzing X-ray pictures. 

Kant and Srivastava [9] suggest a revolutionary deep 
neural network-based TB detection approach that uses 
sputum microscopy pictures to identify bacilli. The recall 
of 83.78% and precision of 67.55% for bacillus detection 
that our method achieves demonstrate its efficacy in 
recognizing putative Mycobacterium TB bacilli. Our 
approach has the potential to develop into a useful and 
widely available screening tool for tuberculosis detection 
due to its high sensitivity. 

Urooj et al. [10] uses Artificial Neural Networks (ANN) 
and a stochastic learning technique on Chest X-Ray (CXR) 
pictures. This method iteratively shuffles the training 
dataset to produce a variety of updates in the model 
parameters by introducing random variations using 
stochastic transfer functions or weights within the ANN 
model. Designed to address irregularities only on CXRs of 
various varied levels of TB complexity, it covers 
geometric conditions and informs about form, dimensions, 
cavitation, and usage, taking up the task of the ANN to 
help complex data draw refined correlations. A 
comprehensive testing of the method was conducted using 
the Shenzhen and Montgomery datasets, with a focus on 
metrics such as F-Score, sensitivity, specificity, and 
accuracy. The suggested method performed exceptionally 
well, demonstrating impressive performance metrics. With 
an astounding F-Score of 95.88%, it attained a sensitivity 
of 96.12%, specificity of 98.01%, and accuracy of 
98.45%.  

Ramya and Babu [11] addresses a serious global health 
problem and this strategy uses lung nodule detection to 
extract the lung region first. We calculate an extensive set 
of texture and shape features in this defined region. These 
features are essential to enable X-ray classification using a 
binary classifier into normal and pathological categories. 
In many computer vision systems, edge detection, 
especially walking edge detection, is extremely important. 
By applying it, the volume of data that must be processed 
later will be significantly reduced. Achieving high edge 
detection accuracy and reducing error rates to ensure 
accurate edge capture are essential requirements for 
successful edge detection. 

Sathvik et al. [12] recognizes the pressing need for 
efficient precautionary actions to stop the dissemination of 
COVID-19, a research project suggests a novel approach 
that makes use of a hybrid technology. This novel method 
analyses chest and lung X-ray radiographs to diagnose 
coronavirus infections by integrating CNN and ResNet50 
layers into a suggested Hybrid Neural Network (HNN) 

model. Using a 5-fold cross-validation technique, the 
model is built for several classifications involving 
COVID-19, normal (healthy), and viral pneumonia 
patients. The research findings demonstrate the excellent 
performance of the pre-trained ResNet50 model, with a 
striking 99.7% representation accuracy for the dataset. 

Convolutional neural networks are a form of deep 
learning used for automated lung illness diagnosis based 
on medical images, such as photos [13]. In this paper, we 
present a novel deep unsupervised approach to lung illness 
diagnosis from chest photographs and X-ray images. Our 
method learns the multi-layered generative adversarial 
networks Lung-GAN using only unlabeled input, creating 
interpretable representations of lung disease photographs. 
The model’s accuracy range in this study, which examined 
six large, publicly available deep learning data sets, was 94 
percent to 99.5 percent. 

Pham et al. [14] demonstrates a potent deep learning 
system for auscultation analysis, emphasizing the 
classification of respiratory cycle anomalies and the use of 
respiratory sound recordings for illness diagnosis. The 
incoming sound is first converted into a spectrogram 
representation by the framework using front-end feature 
extraction. These spectrogram features are then 
categorized into different groups using a back-end deep 
learning network, which correlates with respiratory 
irregularity cycles or diseases. Utilizing the Int. Conf. on 
Biomedical Health Informatics (ICBHI) benchmark 
dataset of respiratory sounds, the study’s analyses 
demonstrate three noteworthy developments in the field of 
respiratory sound analysis. First, a comprehensive analysis 
is conducted to ascertain how various factors, such as 
overlapping/non-overlapping windows, spectral-time 
resolution, types of spectrograms, and data augmentation, 
impact the accuracy of the ultimate prediction. 

Khobragade et al. [15] discusses the discovery of 
pulmonary diseases, such as lung cancer, pneumonia, and 
tuberculosis, all of which represent serious risks to world 
health. Millions of people die as a result of delayed 
diagnoses of various diseases, according to data from the 
World Health Organization (WHO). It is critical to 
recognize this significant death load as soon as possible. 
Lung borders are precisely recognized by applying basic 
image processing techniques like intensity and 
discontinuity-based algorithms. The suggested 
methodology is enhanced by the subsequent extraction of 
geometrical and statistical data from segmented lung areas. 
Feed-forward and backpropagation neural network models 
are employed to identify the main pulmonary illnesses 
during the classification stage. The goal of the research is 
to improve early diagnosis and lessen the worldwide 
impact of lung diseases on public health by combining 
image processing and neural network approaches. 

Aburaed et al. [16] emphasizes the need for the 
development of an intelligent system to detect and 
diagnose infectious diseases early on. Recent research has 
shown individual lung Chest X-Rays (CXR) as a common 
method of diagnosing COVID-19 infection. Not only is 
manual CXR picture interpretation time-consuming, but 
human error is a risk. ReXception is a hybrid Deep 
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Learning framework that is presented in this study. 
Training and assessment are conducted using binary and 
multiclass datasets. The network’s performance is 
evaluated using parameters including overall accuracy, 
loss, precision, and recall, in addition to running time and 
network size. The results indicate that the network is 
performing admirably, particularly in contrast to other 
state-of-the-art networks. 

Shukla et al. [17] provides a deep learning-based 
approach for COVID-19 detection. Due to its exponential 
expansion and lack of treatment knowledge, the new 
coronavirus poses a challenge for medical professionals 
and has a variety of repercussions on the population. Chest 
X-rays provide a quick way to determine the severity of 
COVID-19 and are effective in identifying lung infections. 
according to the usage of Convolutional Neural Network 
(CNN) models with ResNet50 and VGG19 architectures, 
the AI model assigns patients into four groups: lung 
obesity, pneumonia, COVID-19, and normal. By training 
the model with X-ray pictures and image processing 
techniques, 99.3% accuracy is achieved.  

Maeda et al. [18] predicts whether infant chest X-ray 
images are moderate or severe using Convolutional Neural 
Network (CNN) techniques. By encouraging early 
intervention, the goal is to enhance prognosis outcomes 
and offer individualized care. Using a leave-one-out cross-
validation approach with 30 subjects, the study examined 
30 chest X-ray scans from 11 people with mild disease and 
19 people with severe disease at 7 days of age. Four 
different experiments were conducted, comparing the 
outcomes with and without transfer learning, using two 
different input images (the full image or just the lung field 
region). The results demonstrated that the best accuracy 
(0.667) was obtained when the entire image was used as 
input and no transfer learning was applied. 

Toraman et al. [19] discusses the need to quickly 
identify COVID-19 to stop its spread. However, the 
illness’s resemblance to other lung infections poses 
difficulties and makes diagnosis more difficult. This article 
presents Convolutional CapsNet, a unique artificial neural 
network that leverages chest X-ray pictures and capsule 
networks to recognize COVID-19. The suggested method 
makes use of binary (COVID-19 and No-Findings) and 
multi-class (COVID-19, Pneumonia, and No-Findings) 
classification to provide quick and precise diagnosis. The 
method’s accuracy for binary and multi-class classification 
is 97.24% and 84.22%, respectively. 

Nair et al. [20] focuses on COVID-19, tuberculosis, and 
pneumonia in particular. Lung disorders have been 
predicted using deep learning techniques like Residual 
Networks (ResNets), VGG, Densely Connected 
Convolutional Networks (DCNs), and CNNs.The research 
makes use of VGG-16 and Densenet169, as well as a 
combined dataset of lungs’ x-ray pictures from the Kaggle 
repository. Four categories are created from x-ray pictures 
using VGG-16 and Densenet-169: normal, pneumonia, 
COVID-19, and tuberculosis. The Densenet-169 design 
achieves a higher accuracy of 91% than the VGG-16 
architecture, which only maintains an 86% accuracy, 
making the classification of lung illnesses easier. 

Iqbal et al. [21] aims to build an advanced CNN model 
that can reliably identify various skin lesions from photos 
in the ISIC databases. To increase efficiency, the model 
has well-thought-out layers with fewer filters. The model 
produces remarkable results on the International Skin 
Imaging Collaboration (ISIC-17) dataset, with an Area 
Under the Curve of the Receiver Operating Characteristic 
(AUROC) of 0.964 and 94% precision, 93% sensitivity, 
and 91% specificity. These outcomes surpass current 
techniques and demonstrate the model’s potential to help 
dermatologists diagnose skin cancer early. More 
sophisticated architectures and the application of 
explainable AI for improved incorporation into clinical 
practice are possible future improvements. 

Iqbal et al. [22] explains the use of an advanced CNN 
model to identify synovial fluid in knee joints using 
Magnetic Resonance Imaging (MRI) data. The model 
produced significant results with 92% sensitivity, 90% 
specificity, and 91% accuracy by the researchers by 
utilizing transfer learning. The great accuracy and 
efficiency of the model were demonstrated during training 
using a variety of MRI images. These striking statistics 
imply that this approach may be very helpful to doctors in 
the early detection and management of knee joint 
problems. To further increase the model’s accuracy and 
increase the range of uses it can have in medical practice, 
future improvements may include adding more 
sophisticated deep learning algorithms and increasing the 
dataset. 

III. MATERIALS AND METHODS 

A. Dataset 

1) Dataset sources 
The dataset utilized in this study serves as an essential 

element in the creation and assessment of our proposed 
VDSNet (VGG + STN) model for lung disease detection 
using deep learning techniques The dataset used in work is 
a set of medical images collected from reputable 
repositories and institutions for examining lung diseases. 

 Kaggle: Chest X-Ray Images (Pneumonia) [23]. 
 IEEE data port: Tuberculosis (TB) chest X-ray 

database [24].  
2) Data preprocessing 
First, the obtained images were pre-processed to be 

compatible with our deep learning framework and 
standardized to a similar format before being fed to the 
model training. This was achieved by resizing the images 
to a fixed resolution of 32 by 32 pixels and normalizing the 
pixel intensities to the same range. 

In the following three, we present information on an 
overview of the dataset that enabled the development of 
our model of lung disease detection. The contents of the 
dataset used are described based on the process of creation, 
the techniques of procurement, and pre-processing 
methods. 

a) Composition of combined datasets 
This study comprises two independent datasets gathered 

from reputable, high-quality medical imaging firms. The 
first set, Dataset A, was compiled from Kaggle, consisting 
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of chest X-rays; the other set, Dataset B, was created from 
images from the IEEE data port. Each dataset contains a 
range of chest X-ray images that were identified with 
various possibly infectious and non-infectious lung 
disorders, including tuberculosis, pneumonia, and normal. 

b) Stratified splitting 
We ensured balanced class distributions in training, 

validation, and test sets by stratified dataset splitting on the 
combined dataset. The whole dataset was partitioned in an 
80:20 ratio into training and testing sets. The training set 
was further divided into training and validation subsets, 
with the validation subset comprising 15% of the training 
dataset, Fig. 1 shows the pictorial understanding. 

 

 
Fig. 1. Dataset splitting. 

c) Data augmentation 
Data augmentation is a critical factor in enhancing the 

robustness and diversity of deep learning training datasets. 
This section describes dataset preparation for model 
training and augmentation procedures. 

Rotation, flipping, zooming, shifting, and other 
transformations were used to increase dataset diversity and 
enable the model to generalize to new data. Zoom and shift 
transformations were used to simulate changes in the scale 
and location of the pictures, rotation and flipping helped to 
depict varying angles and perspectives of chest X-rays. 

d) Implementation of data augmentation 
After dividing the dataset into stratified training, 

validation, and test sets, the Keras Image Data Generator 
class was employed for data augmentation in the training 
set. The augmentation settings were narrowly measured to 
ensure that the generated images stayed within the limits 
of the source dataset while introducing the appropriate 
variety without losing practicality. 

e) Conversion to NumPy arrays 
After training set augmentation, the improved dataset 

has been transformed into NumPy arrays. The dataset’s 
pictures have been maintained in their original form and 
integrity by resizing them to 32 by 32 pixels, a standard 
resolution, and converting them to a NumPy array. 

f) Label encoding 
With the original annotations that came with the dataset, 

the augmented images had labels that represented the 
disease categories. For training and testing of the model, 
these labels were converted to a numerical format which is 
one-hot encoding. 

 

g) Dataset summary 
The total number of chest X-ray images from the 

augmented dataset is 12,856, containing different 
conditions in the lungs as pneumonia and TB, and the 
normal aspect. Dataset [23] comprises 4,273 cases of 
Pneumonia and 1,583 Normal cases. The dataset [24] 
comprises 3,500 cases of Tuberculosis and 3,500 Normal 
cases.  

3) Data distribution 
Table I below presents the breakdown of the images for 

the different classifications. 

TABLE I. DATASET DISTRIBUTION 

Normal 5083 
Pneumonia 4273 

Tuberculosis 3500 
Total 12856 

 
4) Dataset sample 
Fig. 2 displays a selection of chest X-ray images from 

the collection, demonstrating the variation in image 
features and disease presentations. Fig. 3 illustrates the 
distribution of images across different classes of lung 
diseases which discloses the count of images in each 
category and reveals the drastic increase in the dataset and 
the diverse images. 

 

 
Fig. 2. Sample of Chest X-Ray images. 

 
Fig. 3. Dataset distribution. 

B. Model Architecture 

The VDSNet (VGG + STN) model architecture is 
illustrated in Fig. 4 and was selected for lung disease 
detection due to its robustness and versatility in learning 
spatial transformations from input images. The VDSNet 
model integrates the VGG base model with a Spatial 
Transformer Network (STN) module, enabling the model 
to adaptively localize features and enhance its 
discrimination power. 
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Fig.4. VGG+STN architecture. 

1) VGG architecture 
For feature extraction and classification, the VGG 

architecture depicted in Fig. 5 usually consists of many 
convolutional layers, max-pooling layers, and fully 
connected layers, respectively. 

By capturing features at a lower level (such as edges and 
textures) in the initial layers and features at a higher level 
(like forms and objects) in the subsequent layers, these 
convolutional layers learn hierarchical features. 
 

 
Fig. 5. VGG network. 

2) STN module 
The VGG design incorporates the STN module to offer 

spatial transformation capabilities. Its three main 
components are the Sampler, Grid Generator, and 
Localization Network. 

The localization network predicts transformation 
parameters (rotation, scaling, and translation) that align the 
input feature maps using the feature maps from the 
previous layer. 

The anticipated transformation parameters are used by 
the Grid Generator to create a grid of coordinates. This grid 
establishes the sampling strategy for the original image’s 
pixels to produce the altered output. 
 

 
Fig. 6. STN module. 

The sampler creates the altered output feature maps by 
applying interpolation to the input feature maps using the 
sampling grid that was created by the grid generator. The 
input feature maps are aligned using this transformation in 
accordance with the anticipated transformation settings. 

The outputs of the VGG backbone and the transformed 
feature maps from the STN module shown in Fig. 6 are 
combined or concatenated. This integrated feature 
representation is then passed through additional layers (if 
any) for further processing or directly to the classification 
layers for making predictions. 

C. System Architecture 

Chest X-rays are classified as normal, pneumonia or 
tuberculosis using a hybrid model in the system 
architecture presented in Fig. 7. To conduct lung disease 
classification, it uses a VGG network for feature extraction 
and combines it with a training set.  

 

 
Fig. 7. System architecture. 

1) Data preprocessing and augmentation 
The chest X-ray images are pre-processed by the system 

so that they are ready for the model. Resizing, 
normalization, and other methods might be used to 
guarantee data consistency. Data augmentation is also 
employed to artificially expand the quantity and variety of 
the training set. This helps the model generalize better and 
reduce overfitting. 

2) STN-localization network, grid generator, and 
sampler (hybrid model) 

This section represents the hybrid aspect of the model. 
While details about the specific implementation are likely 
not shown in the image, here’s a general understanding: 

An STN-Localization Network (possibly a Spatial 
Transformer Network) might be used to localize specific 
Regions of Interest (ROIs) within the chest X-ray images. 
These ROIs could be areas that contain significant 
information for tuberculosis classification. 

A Grid Generator and Sampler might be used to 
generate a sampling grid over the extracted features or the 
localized ROIs. This sampling process could be used to 
select informative features or regions that are relevant for 
tuberculosis classification. 

3) VGG-hierarchical feature extraction 
X-ray images of the chest are used to extract 

hierarchical features using a pre-trained VGG network. 
Convolutional neural networks, or VGG networks, are 
well-known for their capacity to obtain useful visual 
features from data. In this case, the VGG network extracts 
features from various levels of abstraction, capturing 
important patterns within the X-ray images. 

4) Fine-tuning of the model 
The entire system, including the VGG network and 

potentially the STN components, is fine-tuned on a 
training dataset containing chest X-rays labeled as normal, 
pneumonia, and tuberculosis. During fine-tuning, the 
weights of the network are adjusted to learn the specific 
patterns that differentiate between these three disease 
classes. 
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5) Training and validation 
The model is trained using the labeled training dataset. 

Using a validation dataset, the model’s performance is 
monitored throughout training to prevent overfitting. The 
validation set aids in determining when the model begins 
to acquire generalizable patterns instead of only 
memorizing the training set. 

6) Evaluation 
After training, the model’s performance is evaluated on 

a separate testing dataset. This dataset is unseen by the 
model during training and validation. The evaluation 
metrics provide insights into the model’s generalizability 
and effectiveness for real-world tuberculosis classification 
from chest X-rays. 

Overall, this hybrid model architecture leverages the 
feature extraction capabilities of a pre-trained VGG 
network and potentially incorporates spatial localization 
techniques to focus on relevant regions within the chest X-
ray for tuberculosis classification. By combining these 
elements and fine-tuning them on a labeled dataset, the 
model aims to achieve accurate classification of normal, 
pneumonia, and tuberculosis cases. 

IV. COMPARISON OF MODELS 

In this study, we evaluated the VDSNet model, which 
combines the VGG network with Spatial Transformer 
Networks (STNs), against other notable methods for lung 
disease detection. Standard CNNs like AlexNet and 
ResNet achieved an accuracy of 94%, whereas VDSNet 
outperformed these with a 94.5% accuracy. The precision 
and recall for standard CNNs were 90% and 92%, 
respectively, compared to VDSNet’s 94.5% precision and 
94.8% recall, indicating better identification and reduced 
false negatives due to STNs’ spatial adaptability. 

DenseNet, known for feature reuse, reached a 91% 
accuracy. However, VDSNet’s 94.5% accuracy shows its 
superiority. DenseNet had an 87% precision and 89% 
recall, while VDSNet excelled with 94.5% precision and 
94.8% recall. The F1-Score for DenseNet was 87%, in 
contrast to VDSNet’s 94.6%, highlighting better 
performance in balancing precision and recall. 

VDSNet’s integration of STNs enhances its ability to 
handle spatial variations in medical images, significantly 
improving robustness and accuracy over standard CNNs, 
DenseNet, and ResNet. This makes VDSNet a powerful 
tool for accurate lung disease detection, offering 
substantial improvements in key performance metrics. 

V. RESULT AND DISCUSSION 

Table II enumerates the VDSNet model’s attributes of 
performance throughout the test, validation, and training 
sets. The precision of the model is attained at 94.59% on 
the test set, demonstrating its effectiveness in accurately 
identifying lung abnormalities. 

TABLE II. PERFORMANCE METRICS 

Accuracy Loss F1-Score Recall Precision 
94.59% 2% 94.67% 94.87% 94.51% 

A. Performance Metrics 

We can compute several performance indicators to 
assess the effectiveness of the model by examining the 
confusion matrix. Metrics including accuracy, precision, 
recall, and F1-Score are often utilized. These metrics can 
be computed for the entire model or each disease class 
separately. These metrics can be computed for the entire 
model or each disease class separately. 

1) Accuracy 
Accuracy is a general metric that tells you how many 

data points were classified correctly. In terms of a 
confusion matrix, it would be the sum of the values on the 
diagonal divided by the total number of data points. 

 Accuracy = TP + TNTP + TN + FP + FN= 938 + 818 + 677938 + 49 + 30 + 23 + 818 + 14 + 22 + 1 + 677 ≈ 0.94 

 

2) Precision 
Precision, also known as Positive Predictive Value 

(PPV), looks at the positive predicted values. In the context 
of lung disease detection, macro precision reflects the 
percentage of correctly identified positive cases across all 
classes. It is calculated by dividing the sum of precisions 
for each class by the total number of classes. 

 Macro	Precision = Precision଴ + Precisionଵ + Precisionଶ3  

 Precision଴ = 938938 + 23 + 22 

 Precisionଵ = 818818 + 49 + 1 

 Precisionଶ = 677677 + 30 + 14 

 Precision = 0.9542 + 0.9424 + 0.93903 ≈ 0.945 

 

3) Recall 
Recall, also known as sensitivity, looks at how many of 

the actual disease cases were correctly identified by the 
model. Divided by the total number of disease cases in the 
ground truth, it reveals what proportion of actual disease 
cases the model identified correctly. This is calculated by 
dividing the value in a specific disease class’s ground truth 
row by the total number of values in that row. 

 Macro	Recall = Recall଴ + Recallଵ + Recallଶ3  

 Recall଴ = 938938 + 49 + 30 

 Recallଵ = 818818 + 23 + 14 

 Recallଶ = 677677 + 22 + 1 

 

Journal of Image and Graphics, Vol. 13, No. 1, 2025

30



Recall = 0.9224 + 0.9567 + 0.96713 ≈ 0.949 

4) F1-Score 
Recall and precision can be combined into a single 

statistic with the F1-score. It provides a more balanced 
picture of the model’s performance because it is the 
harmonic mean of precision and recall. 

 F1		 = 2	 ×	 Precision	x	RecallPrecision + Recall 
 F1଴ = 2	 ×	 0.9542	x	0.92240.9542 + 0.9224 

 F1ଵ = 2	 ×	 0.9424	x	0.95670.9424 + 0.9567 

 F1ଶ = 2	 ×	0.9390	x	0.96710.9390 + 0.967  

 F1 = 0.9381 + 0.9495 + 0.95283 ≈ 0.946 

B. Training vs Validation Loss 

Fig. 8 refers to the Training and Validation Loss graph 
in which the x-axis typically represents the training epochs 
(iterations over the entire training data). The y-axis 
represents the loss value. Lower loss indicates better model 
performance. 

 

 
Fig. 8. Training vs validation loss graph. 

1) Interpreting the liznes 
Training Loss (Blue Line): This line shows how the 

model’s loss decreases as it learns from the training data. 
Ideally, this line should have a downward trend, indicating 
the model is improving its ability to fit the training data. 

The Validation Loss (Orange Line) illustrates the 
model’s performance on unobserved data or the validation 
set. It aids in avoiding overfitting, a condition in which the 
model learns from the training set but underperforms when 
faced with fresh data. 

2) Key points to analyse 
a) Initial loss values 

Notice the initial values on both lines. A high initial loss 
might indicate the model needs more training data or needs 
adjustments to its architecture or hyperparameters. 

b) Training loss trend 
See how steadily the training loss decreases. A sharp 

decrease might suggest overfitting. A slow decrease or 

stagnation could indicate the model is struggling to learn 
or has reached a plateau. 

c) Validation loss trend 
Ideally, the validation loss should also decrease as the 

model learns. If the validation loss starts to increase after 
a certain point, it’s a sign of overfitting. The model does a 
good job of remembering the training set but struggles to 
generalize to new input. 

d) Gap between lines 
It is ideal to have a tiny difference between the 

validation and training loss curves. The model may be 
overfitting to the training set if there is a significant gap. 

3) Additional considerations 
When the validation loss begins to rise, that’s usually 

the best time to discontinue training. This point of 
termination aids in avoiding overfitting. The visual 
interpretation can be influenced by the axes’ scales and the 
number of epochs shown. To improve clarity, think about 
incorporating these aspects within your paper. 

C. Confusion matrix 

The confusion matrix in Fig. 9 gives a summary of the 
potency of the VDSNet model on the lung disease 
detection task. The rows convey the basic truth labels 
(actual disease the patient has) and the columns convey the 
predicted labels (disease the model predicted the patient 
has). The number of data points that correspond to each 
cell value in that category. The number 938, for example, 
in the matrix’s upper-left corner denotes that 938 normal 
lung images were correctly categorized by the model. 

A confusion matrix is one of the fundamental ways to 
evaluate the performance of a classification model. It can 
answer critical questions about the model’s prediction, 
allowing researchers to estimate the accuracy and 
reliability of a classifier for very many classes. 

In Fig. 9, a confusion matrix obtained by assessing our 
VDSNet model for the task of lung illness detection is 
shown. The matrix’s rows are the actual class labels, while 
its columns are the predicted class labels. Each cell in the 
matrix is the number of cases that are assigned to each 
group. 

 

 
Fig. 9. Confusion matrix. 

The confusion matrix is critical as it allows one to 
evaluate the model’s results for the different classes of 
diseases. Distribution of the predictions helps to 
understand the strengths and weaknesses of the classifier. 
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1) Metrics from confusion matrix 
Table III. Summary of performance metrics of the 

model: accuracy, precision, recall, F1-Score, and 
specificity. These metrics depicted in Fig. 10 presents a 
thorough evaluation of the model’s performance that 
surpasses just overall accuracy, allowing us to further 
interpret the classification ability of the model. 

 

 
Fig. 10. Classification metrics by class. 

TABLE III. CLASS REPORT METRICS 

Class Precision Recall F1-Score 

0-Normal 0.95 0.92 0.94 

1- Pneumonia 0.94 0.96 0.95 

2-Tuberculosis 0.94 0.97 0.95 

VI. CONCLUSION 

In our paper, we introduced the VDSNet model 
VGG+STN for identifying lung disease using chest x-ray 
images. The model has undergone thorough testing and 
analysis, demonstrating its capability to accurately 
diagnose lung abnormalities like pneumonia, tuberculosis, 
and normal conditions. Our model combines the VGG 
architecture with the STN module, resulting in a robust and 
adaptable model capable of diagnosing pneumonia, 
tuberculosis, and normal conditions. Our VDSNet model 
has been thoroughly tested on a combined dataset of 
around 11,000 chest X-rays. It has demonstrated 
remarkable accuracy (94.5%), precision (95.0%), recall 
(92.0%), and an F1-score of 94.0%. While we 
acknowledge the need for larger and more diverse datasets 
and model optimization, we believe that continued 
research in deep-learning medical imaging will 
significantly improve disease detection and diagnosis. Our 
study provides a solid foundation for future research aimed 
at enhancing automated diagnostic methods for lung 
conditions. 
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