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Abstract—High-Frequency Oscillations (HFOs) have been 

considered as a potentially useful biomarker for localizing 

epileptogenic areas in drug-resistant patients requiring pre-

surgical intervention, exploiting intracranial 

electroencephalographic iEEG. Consequently, it’s important 

to create accurate strategies for detecting epileptic seizures. 

Predicting seizures requires classifying appropriate 

indicators, which is difficult due to their time-frequency 

overlap. Convolutional Neural Networks (CNN), one of the 

deep learning approaches, have demonstrated promising 

results in analyzing and classifying epilepsy-related iEEG 

biomarkers. In our study, we proposed to explore three 

global methods: multiclass of Support Vector Machine 

(SVM), multiple architecture CNN, and CNN-SVM, on a 

simulated iEEG dataset and then on a real iEEG signal. Our 

best results for the studied three models in the classification 

of HFO have yielded high accuracy rates: GoogLeNet-SVM 

achieves approximately 99.63% and 94.07% for simulated 

data (1) and real data (2), respectively, SVM multiclass 

achieves 98.14% and 88.51% for (1) and (2), respectively, and 

GoogLeNet achieves 98.52% and 91.85% for (1) and (2), 

respectively. Hence, we found that our proposed model 

performs better than other current techniques.  These results 

suggest that deep learning models could be a successful 

strategy for classifying epilepsy biomarkers and may 

improve seizure prediction techniques, and hence can 

enhance epileptic patient’s well-being.   

Keywords—High-Frequency Oscillations (HFOs), 

Convolutional Neural Networks (CNN), multiclass Support 

Vector Machine (SVM), CNN-SVM, GoogLeNet-SVM 

I. INTRODUCTION

Epilepsy is the fourth most prevalent neurological 

condition, featured by its unpredictable seizures.  It affects 

individuals of all ages, including numerous patients, and is 

considered medically incurable and requires 

corresponding neurosurgery to achieve seizure freedom [1] 

for 30% of cases. 

Manuscript received June 9, 2024; revised July 5, 2024; accepted 

September 6, 2024; published January 27, 2025.

Preoperatively identification of epileptogenic zones is 

crucial for epilepsy surgery [1]. Presurgical biomarkers are 

therefore crucial in determining regions known as 

epileptogenic zones, which cause epileptic seizures. 

Although epileptogenic zones are difficult to localize using 

inconsistent or insufficient data from many tests, 

intracranial Electroencephalography (iEEG) 

technologies [2, 3] are widely adopted for these cases. 

iEEG recordings are considered a traumatic technique 

where cortical sub-zone interactions are visualized by 

placing electrodes directly on the brain [4, 5]. Accurate 

localization of EZ areas and safe ablation are major factors 

for successful surgical outcomes [6]. iEEG recordings are 

employed.to detect epileptogenic regions thanks to their 

ability to directly record epileptogenic discharges with 

high temporal and spatial accuracy and are regarded as 

gold standard in electrophysiology for defining SOZ, 

which essentially characterizes EZ [7]. One of the potential 

biomarkers that has been suggested is High-Frequency 

Oscillations (HFOs) that occur between 80 Hz and 500 Hz 

of the region where seizures begin and have demonstrated 

a high degree of accuracy in detecting interictal 

epileptiform discharges. 
HFOs are considered an indicator of seizure build-up, 

and they particularly show up during the ictal period [8, 9]. 

It has been well demonstrated and reproduced that HFOs 

appear much more in SOZ than outside [10–12]. HFOs are 

characterized as rapid oscillations, typically elapsing from 

6 ms to 30 ms with a varied morphometry and frequency 

range [13]. Consequently, it is well recognized that 

manually identifying HFOs may be incredibly difficult, 

time-consuming, and subject to subjective 

biases [14, 15]. 

In this context, several algorithms for automated 

detection have been built and implemented to help 

significantly minimize the amount of labor needed for 

HFO analysis and avoid biases induced by human 
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evaluators [16]. However, the majority of   HFO detection 

methods have only been able to detect HFOs by 

thresholding instantaneous frequency traces, which may 

be susceptible to artifact effects and irregular HFO 

formation [17]. 
In the clinical study of HFOs, detection accuracy is 

quite important, and yet, classifying different events is also 

crucial. HFOs can be categorized as ripples (80–250 Hz) 

and Fast ripples (250–500 Hz) based on their frequency 

range [18]. Fast Ripples (FR) are thought to be more 

focused and intimately associated with epileptogenicity 

than Ripples (R) [16, 19]. Consequently, a detection and 

classification framework was proposed to achieve high 

accuracy, sensitivity, and specificity in classifying HFOs 

and hence defining EZ. 
Several studies in this field of classifying HFOs and 

promoting seizure detection and for the second time 

epilepsy diagnosis have proposed to point machine 

learning and deep learning models. 

 Lachner-Piza et al. [20] proposed a supervised machine 

learning method that classified HFOs using SVM multi-

classification into four classes: FRs, Rs, IESs co-occurring 

during Rs, and IESs co-occurring during FRs.  
Sciaraffa et al. [21] suggested a supervised machine 

learning approach using SVM and LDA. Logic regression 

KNN Multi-classification of HFOs into three classes: Rs, 

FRs, and FRs co-occurring during Rs. Firpi et al. [22] 

proposed a supervised neural network to distinguish HFOs 

from baseline activity. Dümpelmann et al. [23] presented 

a radial basis function neural network-based for HFO 

detector. The detector input features were energy, line 

length, and instantaneous frequency. Three patients’ 
visually indicated “ripple” HFOs (80–250 Hz) were 

utilized to train a neural network, and eight more patients 

were employed to test the detector. Chaibi et al. [24] 

proposed a Decision Tree to classify two classes (HFO and 

Non-HFO). It has a sensitivity of 66.96% and detects six 

features correlated with energy and duration. Jrad et al. [25] 

used the multiclass LDA method to classify (Ripples, Fast 

ripples, Ripple + Fast ripples, and artifacts). It has a 

median of 80.5%, and energy was computed with a 

discrete wavelet. 
As for Krikid et al. [26], they proposed two approaches 

for the multi-classification of HFOs based on Time-

Frequency (TF) analysis. The first approach was a Deep 

Learning (DL) based on combining certain characteristics 

extracted from TF representation of HFO with TF 

associated images binarized. It is divided into four 

frequency bands: gamma ([30, 80] Hz), high gamma ([80, 

120] Hz), Ripples (RS [120, 150] Hz), and Fast Ripples

(FRs [250, 500] Hz). This coupling aims to provide a

complete characterization of HFO. A second approach

focuses on providing an automatic multi-classification

method for HFOs based on CNN. They increased the

database using augmented reality to generate new TF

images and evaluate its impact on CNN model

performance.

The proposed algorithm ought to have robust 

classification capability in HFO subtypes and HFOs 

concomitant with other intercortical epileptiform 

discharges.  

In this study, the robustness of HFO classification was 

evaluated using three methods: multiclass SVM, multiple 

CNN architectures, and a hybrid CNN-SVM model, 

applied to both simulated and real iEEG signals. The paper 

is structured as follows: Section II provides an overview of 

the proposed system, including data collection and the 

experimental methodology. Section III summarizes the 

experimental results, while Section IV offers a more in-

depth discussion of results, highlights certain limitations, 

and suggests future directions. Finally, Section V 

concludes the paper. 

II. METHODS AND MATERIALS

This section presents our adopted architecture for 

detecting HFOs and automatic labeling of three clusters for 

the dataset (1) (R [80, 250] Hz, FR [250, 500]) Hz, and SR 

(spike-ripple) and three clusters for the dataset (2) (R, FR, 

and R and FR). The steps of our proposed method are 

illustrated in Fig. 1: 

First, iEEG data are mapped into 2D time-frequency 

plots using Continuous Wavelet Transform (CWT). Then, 

we explored model development with multiclass SVM 

architectures, model CNN, and CNN-SVM.  

Fig. 1. Proposed model for HFO classification applied on two datasets. 

Three main steps: data collection, preprocessing step, and developing 

model. 

A. Dataset Description

In this paper, two types of databases have been explored

to assess the effectiveness of the suggested approaches: 

Simulated data is generated using a peak and HFO 

shapes combination as a real iEEG signal that is sampled 

at 512 Hz for 2 s using 1024 samples [27]. 
We have three classes of signals including HFO (Ripple, 

Fast Ripple) and overlaid ripple and spike. Through 

altering various parameters, such as relative amplitudes, 

frequency of oscillations, Signal-to-Noise Ratio (SNR), 

and overlap rate. 
We obtained 3000 data sets composed of HFO events 

(Ripple and Fast Ripple), and a mixture of spikes and fast 

events. We also varied the oscillation frequency in [85, 105, 

200, 350, 450] Hz as (ripples and fast ripples). 
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Real data is obtained in combination with two sources. 

First, iEEG recordings for a patient with pharmacoresistant 

epilepsy, where the clinical neurophysiology department 

of Timone Hospital in Marseille was responsible for the 

acquisition and preparatory measures [28] and confirmed 

by expert. IEEG data were sampled at 1000 Hz and 

recorded on a Deltamed system using a low-pass filter, 

depicting 117 canals × 30 segments with a frame rate of 

300 ms. We investigated 1000 trials of HFOs. Our second 

studied dataset is iEEG data with marked HFO events [29] 

sampled at 2000 Hz, for 20 patients, nine of them had 

mesial Temporal Lobe Epilepsy (TLE) and eleven had 

Extratemporal Epilepsy (ETE). For each patient 28 

intervals, we recorded intervals with 300 ms of frames, and 

we explored 2220 trials of HFOs.  

B. Data Preprocessing 

The localized power distribution of HFOs in the 

frequency and time domains (2D) is the most important 

characteristic for visual assessment. The scalogram image 

is represented by the Continuous Wavelet Transform 

(CWT).   coefficients of iEEG data. In time-frequency 

analysis, wavelet analysis is a windowed Fourier analysis 

with a variable window width that provides details on an 

event’s local frequency structure. 

cwt is a convolution of the wavelet function 𝛹(t) with 

the signal x(t) and is given by Eq. (1) [30]. 

 

𝑐𝑤𝑡(𝑏, 𝑘) =  
1

√|𝑘|
∫ 𝑥(𝑡)𝛹 (

𝑡−𝑏

𝑘
)

+ ∞

− ∞
d𝑡             (1) 

 

where the translation parameter is denoted by b and the 

scaling parameter by 𝑘.  Since 𝑘  and 𝑏  are continuous 

parameters, many wavelet coefficients are produced.  

The used wavelet for 𝐶𝑊𝑇  is the Analytic Morlet 

(complex-valued in a time domain and has one-sided 

spectra), which depicts equal variance in frequency and 

time. Hence, we converted a 1D iEEG signal dataset into a 

scalogram image dataset. Our scalogram images were 

scaled to 224×224×3 pixels, which varied from 80 to 500 

Hz vertically and 300 ms horizontally. 

C. Model Development 

First, we proposed here to apply machine learning 

techniques. 

1)  Multiclass SVM 

To explore multi-class classifications, two basic 

approaches have been proposed, founded on breaking 

down multi-class into a collection of binary issues.  

The initial strategy is known as one-versus-all, in which 

a group of binary classifiers has been trained to distinguish 

between each class. Then, based on the highest decision 

value, each data object is assigned to a class [31]. This 

method results in N-SVM (where  𝑁  is the number of 

classes) with 𝑁  decision functions. Although, this is a 

fast method, but it depicts errors due to the slightly 

unbalanced training sets. The second approach is called 

“one-on-one”, which compares each pair of   classes 

using support vector machines. Select the class label that 

best fits the majority of one-on-one challenges after 

applying all SVMs to a test observation. 

Next, the max-win operator is employed to determine 

which class the object will ultimately be assigned to.  This 

method requires applying 𝑁(𝑁 − 1)/2 machines. 

Compared to the “one-against-all” approach, the “one-on-

one” requires more computation, but is found more 

suitable for multi-class cases. 

• Error-Correcting-Output-Codes (ECOC) for 

multiclass SVM classification 
The multiclass method is based essentially on Error 

Correction Output Coding (ECOC). It consists of applying 

binary (two-class) classifiers to solve multiclass 

classification problems. 

This approach is based on converting the 𝑀  class 

classification problem into a large number L. 
ECOC represents a unique codeword to a class instead 

of assigning a label to each class. An error correction code 

(𝐿, 𝑀, 𝑑) is 𝐿 bits long, with 𝐶 a single codeword with a 

hamming distance 𝑑 . Between two codewords, the 

hamming distance presents a number difference of bit 

positions.  In a classification issue, where 𝑀 is the number 

of classes and 𝐿  is a number determined by error 

correcting codes method.  
Serval techniques are suggested, including BCH 

codes [32], and exhaustive codes [33] to resolve error 

corrections codes.  
Krizhevsky et al. [34] proposed using maximum 

Hamming distance and suggested that errors(𝑑 − 1)/2  
can be corrected in codewords for a Hamming distance d 

between codes (which counts the different number of bits). 

Decomposition of a class multiclass issue with 
   𝑘1 … … … . . , 𝑘𝑐 as the class labels generated a set of 

binary classifiers represented by 𝑓1 … … … , 𝑓𝑐 a binary 

classifier subdivides the input patterns into two 

complementary super class 𝑘𝑖
1 and  𝑘𝑖

−1grouping together 

one or more classes of multiclass problem. 

𝐿 et 𝑀 = [𝑏𝑖𝑗]  is a decomposition matrix of dimension 

𝑚 × 𝑐, connecting class𝑘𝑖 … … … . . , 𝑘𝑐 to the super classes 

𝑘𝑖
1  and 𝑘𝑖

−1 ,  where the definition of an element of matrix 

𝑀 is:  

𝑏𝑖𝑗 = {
−1 𝑖𝑓 𝑘𝑐∈𝑘𝑖

−1

1 𝑖𝑓  𝑘𝑐∈𝑘𝑖
1 

}                        (2) 

Therefore, for 𝑀  classes, a matrix 𝐷 ∈ {∓1}𝑀×𝐶  is 

obtained. 

2)  Convolutional Neural Network (CNN) 

Convolutional neural network is a specific type of 

multi-layer neural network, a simple neural network 

cannot learn complex features. In multiple 

applications [35, 36] such as image classification, object 

detection, and medical image analysis, CNNs have shown 

excellent performance. 

In this part of the work, several convolutional neural 

networks, including GoogLeNet, ResNet18, ResNet50, 

and ResNet101, have been proposed on different CNNs. 

As shown in Fig. 2, CNN is a multi-layer network 

structure made up of basically five layers: starting from the 

input layer, pooling layer, convolutional layer, fully 

connected layer, and finally output layer. 
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Fig. 2. The basic structure of CNN. 

With CNN, we can transfer local features from inputs at 

higher layers to lower layers for greater complexity and 

functionalities. Therefore, we proposed a detailed 

description of these layers: 

• Convolution layer: main layer of CNN, it does a 

linear procedure known as “convolution”, that 

involves multiplying input-set weights. Two sets of 

information are combined by performing a 

mathematical operation between kernel Function and 

input image. 

• Pooling layer: usually succeeding the convolutional 

layer, where squares of pixels (usually 2 × 2  or 

3 × 3 ) are substituted with a single value, 

significantly decreasing and simplifying the size of 

images. Pooling can be performed using maximum, 

average, or sum pooling. Since maximum pooling 

makes it possible to identify more exact features, it 

was used in this study. 

• Fully Connected (𝑓𝑐) Layer known as a dense layer, 

which resembles a standard neural system. 

• Last layer activation function: softmax. 

Each task requires the selection of an appropriate 

activation function.  The last fully connected layer’s output 

real values are normalized to target class probabilities 

using the softmax activation function, which is employed 

in the multiclass classification task. All values in the 

function’s output range from 0 to 1.  

In this research, we looked into four different 

convolutional neural network techniques: 
• GoogLeNet: GoogLeNet, also called Inception, is a 

deep convolutional neural network architecture 

design created By Google researchers [37], depicting 

22 layers deep. GoogLeNet stands out for its in-depth 

architecture and efficient use of computing resources. 

GoogLeNet is based on building modules, with 

multiple parallel convolutional operations of 

different kernel sizes. These parallel operations 

capture information at different scales, allowing the 

network to efficiently learn hierarchical features. Our 

network has an input image size of 224 by 224, 144 

layers, and 6.9 million trainable parameters. Starting 

with the input layer, convolution layer, ReLU, and 

Max pooling. This structure is repeated until it 

reaches the fully connected layer, and then the 

classifier layer registers the output classification 

result. 

The architecture addressed the challenge of 

vanishing gradients in very deep networks and 

achieved impressive performance in image 

classification tasks, particularly in the ImageNet 

Large Scale Visual Recognition Challenge (ILSVRC) 

in 2014. 

• ResNet: ResNet (Residual Network) is a deep 

convolutional neural network architecture designed 

to overcome very deep neural networks. The key 

innovation of ResNet is exploring residual learning 

blocks (residual units or residual blocks). These 

blocks have shortcut connections that allow the 

model to get around one or more layers to learn 

residual mappings. The main advantage of residual 

connections is their ability to alleviate the vanishing 

gradient problem. In residual connections, further 

information can be directly propagated to further 

layers, which assists the network in learning complex 

mappings. ResNet architectures have been widely 

adopted in a variety of computer vision tasks, 

including image classification, segmentation, and 

recognition of objects, due to their ability to 

efficiently train and scale very deep networks.  

• ResNet50: ResNet50 is a specific variant of Residual 

Network (ResNet) architecture, featured by its depth, 

using 50 layers and 25.5 million parameters. The key 

innovation of ResNet50 is the use of residual 

learning blocks. These blocks contain shortcut 

connections (skipped connections), that push the 

model to learn residual mappings. ResNet50 includes 

several building blocks including residual units, 

which are composed of convolutional layers with 

batch normalization and Rectified Linear Unit 

(ReLU) activations. Skipped connections in these 

units allow the direct flow of information from one 

layer to another, reducing degradation that can occur 

in extremely deep networks.  

• ResNet 18: Composed of 18 layers and 11,511,784, 

total trainable parameters [36], 3×3 CONV layers 

with filters, and only two pooling layers used at the 

beginning and end of the network. Connections are 

found between every two CONV layers. ResNet18 

uses shortcut connections to solve the disappearance 

problem [36].  

• ResNet101: Presenting101 layers, about 44.6 million 

trainable parameters are. The network depth is 347 

layers, Resnet-101 differs from other architectures by 

optimizing residuals between desired input and 

convolution properties. The desired functionality is 

achieved more easily and efficiently compared to 

other architectures [38]. 

In ResNet architecture, missing learning information 

will be transferred to the next layer using the 

ResBlock layer. The residual values are passed to the 

following layer in the Resnet architecture by the 

Resblock layer. For each two-layer activation, jumps 

between weight layers, are corrected by the Relu 

activation code. 

The nonlinear ReLU function is represented by two-

layered residual block structures. 

                               

                               𝐹 = 𝑤2𝜎(𝑤1𝑥)                               (3) 

 

The output result 𝑦  is obtained by adding a second 

ReLU value.  
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                        𝑦 = 𝑓(𝑥, ({𝑤𝑖})) + 𝑥                      (4)                                                             

Eq. (10),  denotes the input vector, while   denotes the 

output vector.  

3) The proposed CNN-SVM hybrid architecture 

 

 

Fig. 3. CNN_SVM model architecture outlines two basic processes:  

CNN for feature extraction and SVM for classification. 

In this study, we proposed several well-known pre-

trained networks, including AlexNet, GoogLeNet, 

ResNet50, and VGG-19, which are trained on simulated 

and then real datasets.  

The size of the input image (224×224×3 pixels) is 

defined by the first layer.  

A pre-trained CNN is used for feature extraction, with a 

starting network layer capturing the main image features 

(edges, blobs). A convolutional layer contains network 

weight. Preparation of training and test datasets is carried 

out by dividing our dataset into 70% training data and 30% 

testing data. Both the training and testing datasets are 

processed by the CNN model. The features extracted from 

the training dataset are then used to train the SVM 

classifier, as illustrated in Fig. 3. 

• Classification Steps of HFO using hybrid model 

CNN_SVM 

Step 1: Convert 1D iEEG signal to 2D TF scalogram 

image.  

Step 2: Exporting an image from one category folder.  

Step 3: Load database: load images from the Image 

DataStore function that operates on image location to 

associate for each image category their labels. An Image 

DataStore allows us to store voluminous image data, it also 

divides data into 70% training data and 30% test data. The 

smallest number of images in each category is determined 

by each label. Then we tested pre-trained ResNet50, 

ResNet101, ResNet18, google NET, and VGG19 using 

ResNet50, ResNet101, ResNet18, GoogLeNet, and 

VGG19, functions respectively. 

Step 4: Image pre-processing: CNN model processes 

both training and test Set. Image pre-processing for CNN 

according to used network used is carried out by resizing 

images according to the network (224 by 224). 

Step 5: Extract features with CNN using the Activation 

function of each algorithm from ResNet50, ResNet18, 

ResNet101, VGG19, and GoogLeNet. 

Step 6: The training of a multiclass SVM classifier is 

completed using CNN’s features. 

Step 7: The classifier is evaluated by taking image 

features from the test dataset. Subsequently, the classifier 

receives these features back to determine the accuracy of 

the trained classifier. Fig. 4 summarizes the classification 

steps of HFOs using the CNN_SVM models.  

 

 
Fig. 4. Model classification steps CNN_SVM. 

D. Metrics  

In our study, we proposed to evaluate Classification 

Performance using: accuracy, precision, F1-Score, 

sensitivity, and specificity. Performances of classification 

are computed to define the proposed system’s robustness. 

We explored the confusion matrix to compare 

classification results, using: 

Accuracy formulated in Eq. (5). 
 

              𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
                    (5) 

 
 

Precision formulated in Eq. (6). 

    𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                       (6) 

F-Measure (F1-Score) presented in Eq. (7). 
 

 𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2×𝑇𝑃

(2×𝑇𝑃+𝐹𝑃+𝐹𝑁)
                  (7) 

 

Sensitivity (SE) formulated in Eq. (8). 

𝑆𝐸 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                  (8) 
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Specificity (SP) formulated in Eq. (9). 

𝑆𝑃 = 1 −
𝐹𝑃

𝐹𝑃+𝑇𝑁
                           (9) 

III. EXPERIMENTAL RESULTS 

Our study was performed on a PC equipped with a six-

core Intel i7 processor using MATLAB (2023b). The 

server was equipped with an NVIDIA GEFORCE 920M 

with 6 GB of memory. In this section, we depicted the 

results of HFO classification using our models, SVM 

multiclass, multiple architecture CNN, and CNN-SVM. 

We conducted both methods on different datasets. 

A.  Results of SVM Multiclass  

We evaluated SVM ECOC results on different datasets. 

First, we employed two real and simulated datasets. To 

illustrate the multiclass image classification, the 

experiment was carried out with three categories taken 

from a simulated dataset (1) and three categories taken 

from a real dataset (2). Each category for dataset (1) and 

dataset (2) is assigned an index ranging from 1 to 3. A 

multiclass SVM is a classifier that predicts category labels 

with its index. The five used performance measures are 

precision, F1-Score, specificity, sensitivity, and accuracy.  

The confusion matrix is presented in Fig. 5 depicting 

performance measures for each category, respectively, for 

dataset (1) and dataset (2). The outcomes from the 

experiment of image classification using predicted image 

labels and indexes. Experiments were evaluated after 10-

fold cross-validation. Table I presents an outline of results 

based on SVM test performance applied on 224×224 

image size of datasets (1) and (2). 

TABLE I. PRECISION, F1-SCORE, SPECIFICITY, SENSITIVITY, AND ACCURACY MACRO AVG BY SVM ECOC FROM TWO DATASETS 

Model Dataset Precision % F1-Score % Specificity % Sensitivity% Accuracy % 

SVM 

Multiclass 

Simulated DATA (1) 98.19 98.15 99.07 98.14 98.14 

Real DATA (2) 88.52 88.51 94.25 88.51 88.51 

 

    
(a)                                                                                                                            (b) 

Fig. 5. Confusion matrix analyses based on SVM multiclass after 10-fold cross validation model obtained from (a) dataset (1), and (b) dataset (2). 

B. Results of GoogLeNet, ResNet50, ResNet101,  and 

ResNet18 

Table II presents a summary of results obtained from 

various test performances. Considering the same 

conditions of datasets (a 224×224 image). GoogLeNet 

attained the maximum accuracy at the same conditions of 

learning rate 0.001 and Adam optimization function.  
In Fig. 6, we presented the confusion matrix of the four 

investigated classifiers.  It has information available on the 

overall number of segments that are correctly categorized 

and the total number that are misclassified. The first three 

rows of the confusion matrix table are related to the 

predicted category class (output class), and the true class 

(target class) is related to the first columns. Diagonal cells 

show performances of categories classification. Cells 

outside the diagonal refer to misclassified categories.  

According to the confusion matrix in Fig. 6, the 

performance measures were evaluated for each category 

applied on both datasets by CNN models (GoogLeNet, 

ResNet50, ResNet18, and ResNet101). For simulated data, 

and the entire classes (FR, R, and SR), the obtained 

recognition accuracies are higher than 97.8% and 86.2% 

for real data. These results can be justified by the fact that 

real HFOs mainly overlap with other oscillatory activities 

that make the recognition a bit difficult compared to the 

simulated data. 
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(a) 

  
(b) 

  
(c) 

   
(d) 

Fig.6.  Confusion matrix and multigroup classification models of test analyses using the following models: (a) GoogLeNet; (b) ResNet50; (c) 

ResNet101; and (d) ResNet18, each sub figure presented a result above for simulated data and below for real data, respectively. 
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TABLE II.  COMPARISON BETWEEN CLASSIFICATION PERFORMANCES IN TERMS OF SENSITIVITY, SPECIFICITY, OVERALL ACCURACY, AND PRECISION 

OF FOUR CNN MODELS USING TWO DATASETS 

Model Dataset Precision % F1-Score % Specificity % Sensitivity % Accuracy % 

GoogleNet 
Simulated DATA (1) 98.55 98.51 99.25 98.51 98.52 

Real DATA (2) 91.90 91.84 95.92 91.85 91.85 

ResNet 50 
Simulated DATA (1) 98.24 98.15 99.07 98.14 98.15 

Real DATA (2) 90.66 90.34 95.18 90.37 90.37 

ResNet 101 
Simulated DATA (1) 97.03 97.02 98.51 97.03 97.04 

Real DATA (2) 88.65 88.50 94.25 88.51 88.52 

ResNet 18 
Simulated DATA (1) 94.66 93.94 97.03 94.07 96.04 

Real DATA (2) 85.95 85.03 92.59 85.19 87.04 

Note: bold values represent the highest performance. 

 

Table II gathers the classification performances in terms 

of sensitivity, specificity, overall accuracy, F1-Score, and 

precision. Maximum accuracy for datasets (1) and (2) is 

around 98.52%, and 91.85% respectively with maximum 

values of F1-Score (98.51% and 91.84%). The high value 

of the GoogLeNet model also indicates that the trained 

classifier performs significantly better than other tested 

classifiers.  

C. The Results Obtained by CNN-SVM Hybrid Models 

The model combines two methods for supervised 

classification, CNN and Support Vector Machine (SVM). 

The models used batch size 128 and optimized loss 

function using the Adam optimizer.  

To take temporal information into account, five hybrid 

models based on CNN and SVM classifier models were 

built, and their classification performances were tested 

both on simulated data and real data. 

The confusion matrices of the CNN_SVM model are 

depicted in Fig. 7, where three classes for data set (1) 

representing Fast Ripple (FR), Ripple (R), and Spike 

Ripple (SR) respectively, and for data set (2) representing 

Fast ripple (FR), Ripple (R), and Ripple with Fast Ripple 

(R and FR), respectively. However, the HFO detector was 

compared to machine learning, including deep learning 

models, respectively. 

The confusion matrix of recognition results in Fig. 7 

presented the classification result of five proposed hybrid 

models: ResNet50_SVM, ResNet101_SVM, ResNet 18-

SVM, VGG19_SVM, and GoogLeNet_SVM. 

Table III presents the classification performance 

achieved by CNN that has been trained with SVM network 

architecture. Different hybrid models classify our dataset 

within convenient performances, where GoogLeNet 

combined with SVM depicts the highest one. 

 

  
(a) 

  
(b) 
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(c) 

  
(d) 

        
(e) 

Fig.7.  Confusion matrix of five CNN-SVM models classification test effects: (a) ResNet50+svm for dataset (1), and dataset (2) respectively, (b) ResNet 

101+SVM for dataset (1), and dataset (2) respectively, (c) ResNet 18+SVM for dataset (1), and dataset (2) respectively, (d) VGG19+SVM for dataset 

(1), and dataset (2) respectively, and (e) GoogLeNet for dataset (1), and dataset (2) respectively. 

TABLE III.  RESULT OF CLASSIFICATION OF DIFFERENT HYBRID MODEL CNN_SVM FOR TWO DATASETS 

Model Dataset Precision % F1-Score% Specificity % Sensitivity% Accuracy % 

Resnet50_SVM 
Simulated DATA [1] 99.27 99.25 99.63 99.25 99.26 

Real DATA [2] 91.55 91.47 95.74 91.48 91.48 

ResNet 18_SVM 
Simulated DATA [1] 98.90 98.99 99.44 98.88 98.89 

Real DATA [2] 91.55 91.47 95.74 91.48 91.48 

ResNet 101_SVM 
Simulated DATA [1] 97.87 97.77 98.88 97.77 98.52 

Real DATA [2] 91.12 91.11 95.55 91.11 91.11 

GoogleNet _SVM 
Simulated DATA [1] 99.64 99.63 99.81 99.63 99.63 

Real DATA [2] 94.08 94.07 96.66 94.07 94.07 

VGG19_SVM 
Simulated DATA [1] 98.18 98.15 99.07 98.14 98.15 

Real DATA [2] 89.73 89.61 94.81 89.63 89.63 

Note: bold values represent the highest performance 

 

Fig. 8 shows the overall accuracy, sensitivity, and 

specificity of the tested algorithms. A higher classification 

performance for the proposed GoogLeNet _SVM is 

obtained (an average: 99.63% of sensitivity, 99.63% of 

accuracy and 99.81% of specificity for dataset (1), and 

94.07%, 94.07%, 96.66% for dataset (2), respectively). 
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However, the lower values are respectively equal to 

96.07%, 94.07%, and 97.03% for dataset (1), 87.04%, 

85.15%, and 92.59% for dataset (2) which are obtained 

using ResNet18. Similarly, methods SVM, ResNet18, and 

ResNet18_SVM show lower multiclassification 

performance than the suggested method.  

 

 
(a) 

 
(b) 

Fig. 8. Comparison graph of accuracy, sensitivity, and specificity 

between various test approaches on (a) simulated data above, and (b) real 

data below. 

Table IV summarizes the best performances of ML and 

DL methods: SVM model, GoogLeNet, and hybrid 

GoogLeNet_ SVM.   

TABLE IV. PRECISION, F1-SCORE, SPECIFICITY, SENSITIVITY, AND ACCURACY OF THE BEST RESULTS ACHIEVED FOR THREE MODELS 

Model Dataset Precision % F1-Score % Specificity % Sensitivity % Accuracy % 

SVM 
Simulated DATA (1) 98.19 98.15 99.07 98.14 98.14 

Real DATA (2) 88.52 88.51 94.25 88.51 88.51 

GoogLeNet 
Simulated DATA (1) 98.55 98.51 99.25 98.51 98.52 

Real DATA (2) 91.90 91.84 95.92 91.85 91.85 

GoogLeNet_SVM 
Simulated DATA (1) 99.64 99.63 99.81 99.63 99.63 

Real DATA (2) 94.08 94.07 96.66 94.07 94.07 

Note: bold values represent the highest performance.  

 

Fig. 9, depicts the ROC curve. The larger value under 

the ROC curve indicates a better performance of the 

classifier). As can be seen in Fig. 9(c), the highest AUC is 

obtained by the GoogleNet-SVM classifier on two sets.  

 

 
(a) 

 

 
(b) 

 
(c) 

Fig. 9. ROC Curve of the best results achieved for three test models; (a) 

SVM multiclass, (b) GoogleNet, and (c) GoogleNet_SVM presented on 

the left for dataset (1), and on the right for dataset (2). 

IV. DISCUSSION  

The main objective of this study was to develop and 

evaluate methods for classifying high-frequency 

oscillation (HFO) signals into distinct categories. By 

transforming HFO signals into images using Continuous 

Wavelet Transform (CWT), a substantial dataset 

consisting of 3000 images was generated from simulated 

data and 3220 images from real data. CNN and hybrid 

CNN_SVM models have separated data into training and 

testing sets. Then, data was classified into three classes: 

Fast Ripple (FR), Ripple (R), and Spike Ripple (SR) for 

dataset (1), R, FR, and FR and R for dataset (2), using 

mean accuracy of training and test networks over 100 

training iterations. Important findings in our research 

proved that combined GoogLeNet-SVM based on TF 

images constitutes a potentially useful for multi-
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classification of HFOs and spikes. Deep GoogLeNet 

features of iEEG time-frequency maps, combined with an 

SVM classifier depicted a competitive performance in 

terms of precision, specificity, sensitivity, F1-Score, and 

overall accuracy. These convenient results can be 

attributed to several crucial aspects. 

First, ECOC SVM networks are efficient for large-scale 

classification, but still couldn’t reach neural network 

performances. CNNs have been proven robust in 

recognizing detailed, multi-scale features from iEEG data, 

including advanced architectures such as ResNet and 

GoogLeNet. However, ResNet incorporates residual 

connections, which enables the creation of very deep 

networks while avoiding problems such as the 

disappearance of gradients. This allows networks such as 

ResNet18, ResNet50, and ResNet101 to maintain high 

performance even at high depths. While The GoogLeNet 

Inception module can handle functions at different scales 

simultaneously. 

According to our studies, hybrid models, including 

GoogLeNet-SVM, were able to outperform traditional 

CNN architectures as well as hybrid methods such as 

ResNet-SVM and VGG19-SVM. ResNet-SVM and 

VGG19-SVM showed notable improvements over non-

hybrid counterparts, however, their performance did not 

reach GoogLeNet-SVM conducting in classification. in 

fact, ResNet 50-SVM could achieve 99.26% accuracy on 

simulated data and 91.48% on real data, while VGG19-

SVM achieved 98.15% on simulated data and 89.63% on 

real data. These findings suggest that combining CNNs 

with SVMs generally enhances performances compared to 

CNNs. Typically, The GoogLeNet-SVM model has the 

peculiarity of combining the extraction of advanced 

features by GoogLeNet with the classification power of 

SVM. GoogLeNet is proven efficient in generating rich 

and relevant features, while its efficient design minimizes 

overfitting, especially with limited data sets. On the other 

hand, SVM excels in maximizing the margin between 

classes in a large functionality space, enabling precise 

classification by effectively managing complex, nonlinear 

relationships in the data. The combination of GoogLeNet’s 

advanced capability extraction and SVM’s robust 

classification capabilities creates powerful synergy, 

enabling optimal class separation. This is advantageous for 

the classification of High-Frequency Oscillations (HFO), 

where subtle and dispersed characteristics are essential. 

However, some limitations of this study must be taken 

into account. Although its effectiveness is undeniable, 

converting HFO signals into images increases data 

dimensionality, and hence classification complexity too. 

Although this problem has been reduced by our deep 

learning method that automatically selects the most 

relevant features, future research could explore ways of 

reducing dimensionality or more advanced deep learning 

architectures to further improve performance. Moreover, 

our data set size, including real data, has been able to 

restrict the generalization of our results. Even if the model 

has shown strong performance, it would be advantageous 

to have a wider and more varied data set to validate later 

and ensure that the model performance is consistent for 

different types of iEEG signals. It is recommended that 

future research should be focused on expanding the dataset, 

exploring other hybrid architectures, and analyzing the 

model’s applicability to other types of signals to further 

improve its clinical usefulness. 

V. CONCLUSION 

Our study focuses on the recognition of epileptic 

biomarkers HFO considered as a hallmark of pharmaco-

resistant epilepsy. We investigated several applications of 

multiclass SVM, CNN, and CNN-SVM models. CNN is 

reviewed as a key element in our classification system 

explored to distinguish HFO classes: three classes 

composed of HFO events (R, FR) and a mixture of spikes 

with Fast events (SR) for dataset (1), and three classes 

composed of R, FR, and Rand FR for the dataset (2).  

Our proposed approach’s effectiveness in terms of 
precision, sensitivity, specificity, accuracy, and F1- score 

has been determined by numerical tests with both real and 

simulated iEEG data. We address this issue in our 

proposed approach by introducing three global models: 

multiclass SVM, model CNN, and CNN-SVM. Our results 

obtained from these models demonstrate a particularly 

high level of accuracy; GoogLeNet-SVM achieves the 

highest accuracy rate 99.63% and 94.07% for dataset (1) 

and dataset (2), respectively, SVM multiclass achieves 

98.14% and 88.51% for (1) and (2), respectively, and 

GoogLeNet achieves 98.52% and 91.85% for (1) and (2), 

respectively. 
These results may open up new avenues, especially for 

the automatic detection of HFO signals and epileptic 

seizure buildup using hybrid algorithms.  
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