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Abstract—Acute lymphoblastic leukemia is a cancer of the 

white blood cell. It originates in the bone marrow, the spongy 

tissue inside bones responsible for the production of blood. 

Despite being the most common cancer in children, Acute 

Lymphoblastic Leukemia (ALL) has remained an enormous 

health concern. The results of traditional diagnosis, including 

morphological examination, immunophenotyping, and 

genetic marker analysis, are relatively slow, subjective, and 

depend considerably on the ability of a hematopathologist, 

hence restricting the classification result’s consistency. These 

disadvantages underline the pressing need for automatic 

diagnostic systems that are fair and satisfactory. This work 

presents the Multi-Scale Enhanced EfficientNet, which, 

through several innovative architectures, can increase 

sensitivity and specificity in accurately identifying subtle 

ALL variations. We assess the MSEENet’s performance 

using a dataset of numerous ALL phenotypes. We achieve 

excellent performance in multiple metrics, like an overall 

accuracy of 98.77%, an accuracy of 98.99%, a recall of 

98.49%, a Matthews Correlation Coefficient of 98.34%, and 

an F1-Score of 98.72%. This research shows the potential for 

MSEENet as a feasible, precise, and dependable ALL 

diagnostic tool, further strengthening patient-specific cancer 

treatment advancements.  

Keywords—Leukemia, blood cancer, Acute Lymphoblastic 

Leukemia (ALL) dataset, MSEENet, medical imaging  

I. INTRODUCTION

Acute Lymphoblastic Leukemia (ALL) has emerged as 

a neoplasm originating in white blood cells. The bone 

marrow represents a central site for the genesis of blood 

cells, which is nestled within the spongy structure of 

bones [1]. However, while this type of cancer is prevalent 

among children, the most common cancer affecting 

children, according to the American Cancer Society, is not 

that adults are affected by this condition [2]. The 

characteristic marked against ALL is the inundation of the 
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bone marrow with lymphoblasts, an immature variant of 

white blood cells, outnumbering healthy blood cells [3, 4]. 

The stratification of ALL remains the centerpiece of the 

individualization of the treatment modalities and the 

prognostication of the journey that the patient will be going 

through. ALL categorization in history has depended on 

morphological scrutiny, genetic markers, and 

immunophenotyping [5]. These methods, although 

contributing critically to the diagnosis and stratification of 

ALL, yet are imprisoned by being time-consuming and 

subjective, just like their dependence on the discernment 

of specialized hematopathologists [6, 7]. This initiates a 

subjective morphologic interpretation, which puts the 

discrepancies in the classification outcomes [8]. 

Nevertheless, this has changed with the arrival of deep 

learning into the field of medical imaging analysis [9, 10], 

which introduces radically new methodologies for the 

classification of diseases like ALL. With artificial 

intelligence, this subfield, by its very name, copies 

architecture and how the human brain operates; it is better 

poised to sense the patterns of intricate features straight 

from raw data, hence assisting automated and classified 

endeavors very precisely. One such sub-domain of deep 

learning, which is currently leading medical imaging 

innovations, as in the case of ALL classification referred 

to in this study, is Convolutional Neural Networks (CNNs). 

CNNs perform autodidactic learning of feature 

representations that span over many layers of abstraction 

and, hence, are well suited for the analysis of images. 

CNNs are able to distinguish between various types and 

subtypes of leukemia with uncanny accuracy and 

robustness. The main hurdle in the use of deep learning for 

ALL classification is these annotated datasets 

development. Despite a growing number of medical image 

datasets, the work of annotating them remains laborious 

and lengthy. The scarcity of specific ALL subtypes and the 

heterogeneity in morphological features further 
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complicate dataset assembly. To surmount these obstacles, 

researchers have deployed strategies like data 

augmentation, transfer learning, and semi-supervised 

learning. Data augmentation expands training datasets 

through image manipulation techniques such as rotation 

and flipping, enhancing dataset volume and variability. 

Transfer learning extracts insights from one domain to 

bolster task performance in a correlated domain, allowing 

for the efficient fine-tuning of pre-trained Convolutional 

Neural Networks (CNNs) on smaller, specialized datasets, 

thereby economizing computational resources. Beyond 

image-centric classification, the integration of multi-

modal data, including gene expression patterns and clinical 

records, holds the promise of refining ALL diagnostic 

models. This holistic approach captures the disease’s 

multifaceted nature, augmenting model predictiveness. 

Multi-modal data integration paves the way for 

comprehensive diagnostic and prognostic frameworks that 

encompass both genetic and phenotypic ALL facets. 

However, in this paper, we aim to overcome these 

challenges by: 

• Introduce the integration of the Multi-Scale feature

extraction within the Enhanced EfficientNetV2B0

(MSEENet), specifically designed for the

classification of ALL.

• MSEENet works on the idea of multi-scale feature

extraction, which improves classification accuracy.

• Experiments on the ALL subtype classification task

showed that MSEENet can achieve an accuracy of

98.77%.

II. LITERATURE REVIEW

In this view, there have been a number of studies that 

have highly contributed to further detection and 

classification of the Acute Lymphoblastic 

Leukemia (ALL) dataset [11] using deep learning and 

machine learning. While marking outstanding signs of 

progress, each of the studies faces some specific 

limitations that are inherent in the methodologies 

themselves and on account of the complexity of medical 

diagnostics. Furthermore, these works will be presented 

further, and their limitations will be reviewed. For 

example, the deep neural network has been used to 

differentiate ALL subtypes accurately by researchers such 

as Atteia et al. [12], who hybridized the feature-learning-

based method with Particle Swarm Optimization (PSO) 

and Principal Component Analysis (PCA) to sustain high 

relevancy in the classification of blood cancers, leading to 

the following accuracy: 97.4%. However, the tuning of 

hyperparameters with regard to PSO and PCA is intricate 

in a way that may make it hard to handle very carefully to 

avoid any case of overfitting or underfitting. 

Gokulkrishnan et al. [13] used pre-trained CNNs and 

reported an accuracy of 96.77%. Transfer learning would 

make the possibility of having the model trained on the 

dataset feasible, but pre-trained CNNs might not 

thoroughly learn the specific image characteristics of 

medical images. They, therefore, may fail in such cases to 

give the model transfer performance over diverse or novel 

datasets of medical images. Hagar et al. [14] suggested a 

novel model that could classify blood cancer using deep 

learning with a range of 98.1% to 98.2% accuracies. The 

underlying architectures of such deep-learning models are 

essentially required to rely on a massive volume of labeled 

training data to show their best performance, which might 

not be practical even in some sparse subtypes of blood 

cancers. Rejula et al. [15] proposed an enhanced Adaptive 

Neuro-Fuzzy Inference System (ANFIS) model with 

97.14% as a promising classification accuracy for acute 

lymphoblastic leukemia. However, though this is 

definitely an innovative approach to combining fuzzy logic 

with neural networks, it again puts another layer of 

complexity in model interpretation. Further, expertise in 

two areas is required to fine-tune the model and interpret 

its decisions accurately. As noted earlier,  

Kadhim et al. [16] had earlier deployed the use of a 

CNN and achieved an accuracy of 98.15% in the 

classification of leukemia from Acute Myeloid Leukemia 

(AML) images. The model’s performance depends on the 

quality and diversity of AML images. Such a model is 

likely to perform well across various stages of leukemia, 

whereas it may perform very poorly when discriminating 

it from various imaging techniques if there are not enough 

of them in the training images. Tusar et al. [17] designed 

and optimized multi-deep learning models, Deep Neural 

Network (DNN), Convolutional Neural Network 

(ConvNet), MobileNetV2, and Residual Neural Networks 

50 (ResNet50) to classify the ALL dataset into its 

corresponding classes. The best accuracy scored by the 

MobileNetV2 was 97.00. Mustafa et al. [18] introduced 

the success of the You Look Only Once (YOLOv5) in 

classifying the ALL disease utilizing Peripheral Blood 

Smear (PBS) images. Their proposed method achieved 

96.7%, 96%, and 97.8% for recall, precision, and accuracy, 

respectively. Together, these studies represent, move 

further, and set the limits of the applicability of 

computational models in the area of medical diagnostics, 

more particularly in the case of leukemia, detection, and 

classification. On the other hand, highlighted limitations 

point toward reducing the computational demand, 

increasing the generalizability of models, making complex 

models interpretable, and ensuring robust performance on 

diverse medical imaging datasets in the future. 

III. MATERIALS AND METHODS

This paper introduces MSEENet, an integrating multi-

scale feature extraction into the EfficientNetV2B0 deep 

learning model specifically developed to effectively and 

precisely classify ALL images dataset using the Inception 

module to capture features at different scales. Since 

EfficientNetV2B0 adopts a more balanced design in terms 

of accuracy/efficiency, the model was chosen for study as 

well. So, this makes it an excellent choice for the task of 

classifying large-scale images. A fundamental use case can 

be used to classify ALL. Nevertheless, to further 

encompass the intricate morphology that is native in ALL, 

we included the Inception Module in our model. We 

speculate that listening to contiguous fragments is actually 

increasing the receptive field for features of an appropriate 

size and spatial extent, enabling the network to 
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successfully capture multi-scale cues important for 

discerning fine-grained differences among ALL subtypes. 

At the same time, customized data-tailoring and analogous 

image preprocessing techniques coupled with attention to 

the hyper-parameters were employed here in training the 

network for ALL dataset. However, Fig. 1 displays the 

proposed MSEENet architecture. Moreover, the 

architecture consists of three primary sections: Block 1, 

Blocks 2 to 7, and the Inception Module, each playing a 

crucial role in feature extraction and classification. Block 

1: The first layer is the Conv2D, followed by Batch 

Normalization, both together doing initial feature 

extraction from input images. This layer captures lower 

features like edges and textures, which sets them up for 

more advanced feature learning in the upcoming layers. 

Blocks 2–7: These blocks use Depthwise separable 

convolutions, which are meant to reduce the number of 

parameters and computational costs without losing 

expressive power. Every block has a Depthwise Conv2D 

followed by Batch Normalization and then a normal 

Conv2D. This setup subsequently enables us to obtain 

more abstract features from the images. 

Inception Module: Among MSEENet, the Inception 

module is one of the most significant breakthroughs. It 

uses multiple parallel convolution operations (1×1, 3×3, 

and 5×5) along with max pooling to capture features at 

different scales. These are paddings, convolutions, and 

max-pooling operations. Then, their outputs can 

concatenate together, which enables the model to extract 

features at different scales, which is essential in correctly 

classifying stages of ALL. See in Fig. 2. 

The research work, therefore, aims to prepare the 

dataset, model architecture, training strategy, and 

evaluation protocol. The all-inclusive dataset includes 

microscopic images of blood samples and their 

annotations from the class standard to the different stages 

of ALL. This process is done in such a manner that the data 

is divided into sets of training (80%), validation (10%), 

and testing (10%) to establish a robust framework of 

evaluation.  

Further, each image goes through a set of preprocessing 

steps that includes resizing to the size of 224×224 pixels to 

meet the input layer requirement, normalization of pixel 

values at runtime to the range [0, 1], and there are no 

augmentation techniques that would strengthen model 

generalizability. MSEENet enhances the 

EfficientNetV2B0 model with the Inception module to 

capture features at different scales. The EfficientNetV2B0 

base model is absolutely an underlying feature extractor. 

The weight of the base model is kept frozen in the first 

training phases so as not to destabilize its feature extraction 

abilities.  

Fig. 1. MSEENet architecture. 

The MSEENet was trained using the training dataset 

and validated its performance on the validation dataset. 

Implement techniques such as early stopping and learning 

rate reduction on the plateau to optimize the training 

process. In the evaluation of our MSEENet model, we 

utilize several key metrics to gauge its performance, 

defined in the context where True Positives (TP) and False 

Positives (FP) denote correctly identified positive 
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instances and mistakenly identified negative instances as 

positive, respectively. Similarly, True Negatives (TN) and 

False Negatives (FN) represent correctly identified 

negative instances and mistakenly identified positive 

instances as negative, respectively. Here is a detailed 

explanation of how these definitions apply to each metric.

 

  

Fig. 2. Structure of left (Block 1), middle (Blocks 2 to 7), and right (Inception module). 

Accuracy measures the proportion of true results (both 

TP and TN) among the total number of cases examined. It 

provides a general sense of the model’s overall correctness. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
                      (1) 

 

Precision (Positive Predictive Value) quantifies the 

number of true positive outcomes divided by the number 

of all positive outcomes (including both TP and TN). 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                         (2) 

 

Recall (sensitivity or true positive rate) is true positive 

results divided by the sum with false negatives, 

representing the capability of the model to indicate all 

cases that would be relevant. 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                        (3) 

 

F1-Score seeks, by its harmonic mean, a balance 

between precision and recall, considering false positives 

and false negatives. 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
       (4) 

 

Matthews correlation coefficient (MCC), a summary 

measure of model quality that accounts for true and false 

positives and negatives, is a measure of balance even if the 

two classes are of very different sizes. 

 

𝑀𝐶𝐶 =  
𝑇𝑃 ×𝑇𝑁−𝐹𝑃 ×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)×(𝑇𝑃+𝐹𝑁)×(𝑇𝑁+𝐹𝑃)×(𝑇𝑁+𝐹𝑁)
      (5) 

 

IV. RESULT AND DISCUSSION 

In this study, we used the Acute Lymphoblastic 

Leukemia (ALL) image dataset [11, 19]. It consists of a 

total of 3256 Peripheral Blood Smear (PBS) images, all 

collected from 89 subjects suspected of the disease. The 

dataset includes the images marked as Benign 

(Hematogones) and Malignant (ALL) and classifies them 

into three subtypes of ALL: Early Pre-B, Pre-B, and Pro-

B ALL, see Fig. 3. The obtained images were captured 

with 100× magnifications, taken from the obtained images 

of a Zeiss camera, and stored in a JPG format. The 

obtained images through the flow cytometry definitively 

classified it. The database further consists of divided 

images processed through color thresholding in the HSV 

color space to aid early cancer screening and reduction in 

diagnostic errors related to non-specific symptoms of ALL.  

 

  

Fig. 3. Sample image from the ALL image dataset [11, 19]. 

The ALL image dataset is used to train, validate, and 

test the model. The image dataset contains four classes, 

benign, early, pro, and pre, which represent various stages 

of the disease. The training process was closely monitored 

to ensure that the model learned well from the dataset that 

had been shown through performance to generalize well 

on unseen data. The dataset was divided into a training set 

of 80%, a validation set of 10%, and a testing set of 10%, 

as shown in Fig. 4. 
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Fig. 4. Dataset splitting ratio: blue (training), green (validation), and 

orange (testing). 

MSEENet is an advanced form of EfficientNetV2B0 

architecture integrated with the inception module that is 

designed to cater to the complexity of the classification 

task of ALL. By having specific dedicated convolutional 

layers and fine-tuning the training regimen, the model aims 

to ensure that the specific minute differences across the 

subtypes of ALL are better captured. 

 

 

Fig. 5. Training and validation performance over epochs. 

The model showcased intense learning and 

generalization behavior in the course of training epochs. 

The introduced architectural advancements for MSEENet 

allowed the model to demonstrate excellent performance 

increase according to all considered metrics. It is 

particularly noteworthy in a challenging multi-class 

classification task such as ALL stage detection. The 

promising results from this study of MSEENet suggest that 

this model could be a giant stride in applying deep learning 

to medical diagnostics, especially in the detection and 

classification of ALL, see Fig. 5. The evolutionary 

improvements in this architecture may potentially give 

clinicians a potent tool for timely diagnosis and 

intervention and, hence, perhaps grant patients suffering 

from ALL more individualized and efficacious treatment 

strategies. However, further exploration of improvements 

in the balance between classification accuracy and 

computational efficiency is needed. Also, the confusion 

matrix of the test set is displayed in Fig. 6. 

 

  

Fig. 6. Confusion matrix. 

Our MSEENet model does have a powerful 

discriminative ability with very few misclassifications, as 

presented by the confusion matrix. Results do point out 

that the model has learned distinguishing features of each 

category, which are pretty effective in their ability with 

very high precision, especially noticeable in the early and 

pro classes. The few errors that do occur do not cross over 

between distant categories (e.g., benign misclassified as 

pro or vice versa). 

TABLE I. ANALYZING THE PERFORMANCE OF THE MSEENET AGAINST THE CURRENT BENCHMARKS 

Authors (Year) Method Dataset Accuracy Precision Sensitivity F1 MCC 

Atteia et al. [12] 
Feature-learning, 

PSO and PCA 
ALL dataset [11, 19] 97.40 - 96.60 - - 

Gokulkrishnan et al. (2023) [13] Pre-trained CNNs ALL dataset [11, 19] 96.77 - - - - 

Kadhim et al. (2023) [16] Their own CNN ALL dataset [11, 19] 98.15 - 94.73 - - 

Hagar et al. (2023) [14] Their own model ALL dataset [11, 19] 98.20 - - - - 

Rejula et al. (2023) [15] ANFIS ALL dataset [11, 19] 95.67 - - - - 

Tusar et al. (2024) [17] 

DNN, ConvNet, 

MobileNetV2, and 

ResNet50 

ALL dataset [11, 19] 97.00 97.00 96.00 96.00 - 

Mustafa et al. (2024) [18] YOLOv5 ALL dataset [11, 19] 97.80 96.00 96.70 - - 

MSEENet (2024) MSEENet ALL dataset [11, 19] 98.77 98.99 98.49 98.72 98.34 

Table I shows a competitive edge of our proposed 

method across different performance metrics compared to 

other contemporary research. With the accuracy almost 

hitting 98.77%, it paves the way for proper detection and 

classification in methodological rigor. This is the highest 

precision ever recorded for its use, hence low rates of false 
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positives, which are always crucial in reliable 

classifications. Also, the highest sensitivity indicates better 

performance in the identification of true positives. The F1-

Score, while being a balanced score for precision and 

sensitivity, is coherent with other metrics for the 

performance of the model. Further, MCC stands at 98.34%, 

showing it as one of the reliable statistical measures in 

varied dataset sizes; this subsequently underscores the 

robustness of the model. 

On the other hand, other studies exhibit accuracies with 

very high values, all above 95%, with Kadhim et al. [16] 

and Hagar et al. [14] reaching above 98%. However, they 

lag in some areas with reference to the proposed method, 

yet they could not point out their prowess across the 

spectrum of metrics in which the proposed method is 

excelling. Based on the performance metrics, these studies 

do not show the complete set of performance metrics for 

this study. However, the present study definitely has the 

set benchmark on accuracy by going even beyond by 

demonstrating exceptional performance in nuanced 

classification abilities reflected in the presented 

comprehensive metrics. 

V. CONCLUSION 

This paper presented MSEENet as a highly improved 

deep learning model that affects enhancement explicitly 

for the purpose of classifying ALL. The need for such an 

innovation arises out of the complexity that the malaise 

entails and a very pressing need for accurate diagnostic 

tools to vividly segregate various stages of the ailment. 

The accuracy and reliability in the ALL classification have 

gone way higher by MSEENet; they really blew up the 

roof. This enhancement was done by integrating multi-

scale feature extraction into the EfficientNetV2B0 deep 

learning model. The dataset was an image of ALL, 

including four main classes of progression: benign, early, 

pre, and pro. It was a kind of comprehensive dataset—so 

comprehensive, in fact, that this represented a complete 

dataset base for our evaluation. The performance of the 

ALL dataset on accuracy, precision, sensitivity, F1, and 

MCC with respect to MSEENet shows clear evidence that 

the proposed adaptations have the best and soundest 

performances. With an accuracy of 98.77%, precision of 

98.99%, sensitivity of 98.49%, F1 of 98.72%, and MCC of 

98.34%, this model gives a new benchmark in the 

classification of ALL, besides carrying potential abilities 

towards the possibility of a significant impact on the 

clinical outcome through enabling early and accurate 

diagnosis. Thus, the hope for MSEENet is to turn into a 

gigantic and very accurate, super-efficient tool for 

healthcare professionals who diagnose ALL. Therefore, it 

is likely that subsequent studies and more data sources in 

this model will open new opportunities for improving the 

presented model and could make its use even more 

widespread, helping not only in breast cancer but also in 

other cancer types, possibly even more for the whole area 

of medical imaging tasks. The successful classification 

with such high accuracy and precision of MSEENet in 

ALL stages represents an auspicious step toward the actual 

potential of deep learning in medical diagnostics and 

developing even more personalized and effective 

strategies in cancer treatment. Future studies could focus 

on integrating further modalities, such as genetics 

information or proteomics, which could help improve the 

power of prediction and increase confidence in model 

scores. In addition, it has been suggested that a multi-

modal approach could lead to insights into the disease at 

its early stage and may result in better classification. 
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