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Abstract—Human pose estimation is an essential component 
of computer vision systems involving human activity, as it is 
concerned with predicting the configuration of the human 
body in 2D or 3D coordinates. The pose is expressed as 
related keypoints representing body parts. We consider the 
case of 2D bottom-up pose estimation, where the location of 
identity-free keypoints is predicted and then grouped into 
individual persons. In contemporary work, while the 
keypoint prediction process is learnable and automated, 
keypoint-grouping still largely relies on non-learnable 
optimization algorithms operating in embedding space, 
grouping similar keypoints regardless of the resulting pose 
structure. To overcome this limitation, this paper presents 
the Graph Edge Classifier (GEC), a novel, learnable 
keypoint-grouping method. In GEC, predicted keypoints are 
represented as a graph, where each keypoint is connected to 
all potentially related keypoints via edges. The main objective 
is to classify edges as either connected or not connected. The 
method consists of three components: A Graph Neural 
Network (GNN) encoder for node and edge feature learning, 
an edge classifier network (decoder), and a post-processing 
step. Additionally, we introduce two novel update functions 
for node and edge features within the message-passing neural 
network framework. Our method achieves an Average 
Precision (AP) score of 46.1% on the CrowdPose test set, 
which is comparable to similar bottom-up methods. 
Moreover, our model is lightweight, with only 0.274 million 
parameters, making it more efficient in terms of 
computational resources compared to other learnable 
keypoint-grouping methods. The learnable, efficient, and 
structure-aware nature of our approach offers potential for 
further improvement, especially through integrated end-to-
end training of both the backbone and grouping networks.   

Keywords—2D human pose estimation, keypoint grouping, 
message-passing neural network, graph neural networks, 
edge classification 

I. INTRODUCTION

Human Pose Estimation (HPE) is a critical task in 
machine-to-human interface systems, facilitating video-
based human body recognition by machines and enabling 
a wide range of applications. Numerous studies have 
utilized HPE methods for various purposes, including 
human-robot interaction [1], health care [2], sports 
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analytics [3], computer animations [4], and 
surveillance [5]. 

HPE aims to localize a set of predefined semantic 
keypoints (e.g., head, left elbow, or right knee) that 
represent a kinematic model of the human body. This 
provides approximate information describing the pose, 
orientation, and relative configuration of a person’s body 
parts. Classical HPE methods relied on custom handmade 
feature extractors to detect and locate keypoints in 
images [6]. However, due to the ability of Deep Neural 
Networks (DNNs) to automatically learn higher-order 
features, deep-learning-based feature extractors have 
become the preferred method for keypoint detection, 
localization, and grouping in the bottom-up case. 

This article focuses on monocular 2D multi-person 
human pose estimation. There are two main strategies. The 
first strategy is the top-down approach that begins by 
detecting all human body instances using an object 
detection network to find the bounding boxes around 
humans present in a frame. Then, it processes each 
instance individually to localize predefined keypoints 
using either direct Cartesian coordinates regression [7, 8], 
or 2D Gaussian heatmap-based methods [9]. The second 
strategy is the bottom-up approach; this method first 
detects all keypoints without assigning to them an identity 
and then groups them into individual persons using various 
techniques. These include part affinity-field [10, 11], 
where a greedy algorithm maximizes a path integral over 
a 2D vector field, root joint regression [12] which 
represents person instances with keypoint positions related 
to their respective roots via an offset relative to the center 
joint, Associative Embedding (AE) maps [13, 14], which 
involve pixel-wise vector embeddings, ensuring pixels 
belonging to the same person have high cosine similarity 
while those belonging to different persons have low 
similarity. 

Graphs are widely used to represent diverse forms of 
data, such as transportation networks and protein 
structures. Problems that can be represented as graphs 
could benefit from computational tasks on graphs, such as 
node/edge attribute inference and graph clustering. 
Traditionally, features were engineered based on statistics 
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or properties like node degree or homophily. However, 
automatic feature learning has become more common, 
with Graph Neural Networks (GNNs) forming the 
foundation of modern graph processing. GNNs generalize 
both spectral graph filters, which use the graph Laplacian’s 
spectral decomposition to perform convolution in the 
frequency domain, and spatial graph filters, which perform 
local message-passing among nodes. The use of GNNs has 
gained traction in HPE literature [15–20], particularly in 
bottom-up multi-person HPE, as graphs are well-suited for 
modeling the articulated human body through modeling 
keypoints and their relationships. 

Of those bottom-up approaches that utilized GNNs, we 
observed that edge features are underutilized, which is a 
missed opportunity. Feature maps such as Associative 
Embedding (AE) maps in [13] are continuous on their 
domain (input image), so they contain useful information 
not only around the keypoints (nodes) but also in the 
spaces connecting pairs of keypoints (edges).  

This article is organized into five sections. The first 
section introduced HPE, its use cases in computer vision, 
and an overview of the common approaches used in HPE. 
The second section summarizes previous work closely 
related to this study. The third section presents a novel, 
fully supervised, learnable keypoint grouping method for 
2D human pose estimation. Section four presents the 
results of our method. Lastly, the fifth section concludes 
the paper. Our main contributions are summarized as 
follows: 
 Reformulating the keypoint-grouping step in

bottom-up HPE as a binary classification of graph
edges.

 Introducing a lightweight supervised learnable
keypoint-grouping method for bottom-up HPE.

 Introducing novel node and edge features update
functions into the message-passing neural network
layer, incorporating edge features to enhance edge
classification accuracy.

II. RELATED WORK

Pictorial Structure (PS) models were first introduced in 
the 70s [21], which aided object recognition algorithms by 
reducing the search space for an object by searching for its 
constituent parts independently. These parts were then 
combined to form an object based on prior knowledge or 
constraints. PS models gained popularity with the 
development of powerful inference algorithms, mainly in 
object recognition [22] and human pose estimation [23]. 
Later, advances in convolutional deep neural networks 
were applied to pose estimation for joint regression [24], 
yielding absolute coordinate vectors for a single person. 

In the current landscape of multi-person HPE, there are 
two primary approaches: top-down pipelines [25–30] and 
bottom-up pipelines [11, 13, 14, 27, 31, 32]. Additionally, 
expressive representation learning of graphs and their 
components [33, 34] has been integrated into multi-person 
HPE frameworks due to the natural fit of modeling the 
articulated human body as a graph. This integration allows 
for the automatic learning of new graph representations 
and pattern discovery in graph data, with the help of Graph 

Neural Networks (GNNs), particularly Message-Passing 
Neural Networks (MPNNs). Now we briefly discuss 
related top-down and bottom-up works and graph 
representation learning applications in 2D HPE. 

A. Top-Down

A top-down 2D multi-person HPE pipeline involves
two main tasks: a full-body detection module [35], which 
determines bounding boxes around human bodies in an 
image, followed by a keypoint localization stage that 
detects keypoints for a single person within each bounding 
box. The most common limitations of the top-down 
approach include: (1) processing N persons in an image 
requires running the keypoint localization network N times, 
leading to higher computational costs, due to the repeated 
processing of overlapping areas; (2) overlapping bounding 
boxes may contain keypoints from multiple people that the 
full-body detector failed to identify, making it difficult to 
exclude them with masking. Despite these challenges, top-
down methods often achieve higher average precision 
scores because the human instance detector provides a 
rough estimate of where all joints of a person inside a 
bounding box should be. Sun et al. [27] HRNET is a 
notable top-down approach that uses a multi-resolution 
Convolutional Neural Network (CNN) and deconvolution 
layers to generate heatmaps for estimating joint locations. 
The inclusion of multi-resolution branches improves 
detections for distant and small individuals.  

B. Bottom-up

Bottom-up 2D HPE methods start with detecting all
keypoints in an image. The subsequent challenge is 
grouping these keypoints into individual people, 
effectively partitioning the set of anonymous joints into 
classes, each representing a single person.  The main 
appeal of the bottom-up approach is its scalability in 
crowded scenes, as keypoint detection is performed only 
once, reducing computational overhead. This makes it 
more suitable for real-time applications and mobile 
environments. However, bottom-up methods generally 
achieve lower accuracy compared to top-down approaches 
due to the complexity of the keypoint grouping task. 

Cao et al. [31] proposed a bottom-up method that uses 
an iterative approach with supervision at each stage. 
Confidence maps predict joint locations, while part-
affinity fields (2D vector fields) relate joints using a greedy 
algorithm to maximize path integrals over the field. 
However, the grouping process in this method is not 
learnable; the greedy algorithm functions as a non-
learnable decoder of the part-affinity fields. 

More recently, Qiu et al. [36] proposed a dynamic graph 
convolutional network, where a soft adjacent matrix is 
computed from the dataset, based on the assumption that 
related keypoints tend to have smaller spatial distances. A 
dynamic graph is generated based on Bernoulli trials on 
the entries of the soft adjacency matrix. The learnable 
parameter ௗܹ and the dynamic graph together are used to 
update the feature embeddings of the image before they are 
decoded into keypoint heatmaps and joint relation 
heatmaps. This approach follows by employing a greedy 
keypoint-grouping strategy [11]. 
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Jin et al. [18] made significant contribution to bottom-
up pose estimation by proposing a differentiable online 
hierarchical graph grouping (clustering) method. This 
approach builds upon the stacked hourglass architecture 
and Associative Embedding (AE) introduced in [13, 14]. 
Their end-to-end trainable network employs a GNN to 
obtain node embeddings, which are used to iteratively 
cluster/group keypoints, updating graph connections after 
each iteration. Despite its innovation, this agglomerative 
approach has several drawbacks: (1) high computational 
cost due to the iterative use of a MPNN followed by 
supervised classifications for edges and macro-nodes 
while dynamically updating graph connections; (2) Low 
accuracy in outlier cases (e.g., an image with only upper 
body keypoints), (3) potential over-smoothing of node 
features with multiple iterations of MPNN, making the 
feature vectors indistinguishable. In contrast, our method 
addresses the keypoint grouping problem through a more 
straightforward and generalizable binary graph-edge-
classification approach. Furthermore, we leverage edge 
features, which have not been utilized in any of the 
previous keypoint grouping methods. 

C. Graph Neural Networks

Deep learning models have demonstrated remarkable
versatility in addressing a wide range of tasks across 
different data formats, including time series and grid-based 
structures. Similarly, Graph Neural Networks 
(GNNs) [37–39] have extended the application of deep 
learning to graph-structured data, via processing graph 
data with permutation equivariant functions. The 
foundational concept behind GNNs is the generalization of 
convolutional operations to non-Euclidean data structures, 
which allows for the efficient processing and 
representation learning of graph data.  

The process of transforming node and edge features 
based on the graph structure is referred to as “graph 
filtering” in the literature. Two main types of graph filters 
exist: spatial and spectral. Spatial filters are the most 
relevant in our case. The Message Passing Neural 
Network (MPNN) [40] framework is a general GNN 

framework, and many spatial graph filters are a specific 
case of an MPNN.  An MPNN consists of two main 
components: a message function, which generates 
messages based on a permutation-equivariant aggregation 
of a node’s neighborhood and the node itself, and an 
update function, which takes the generated message and 
the current hidden embedding of a node to produce an 
updated node feature vector. This iterative message-
passing scheme enables MPNNs to effectively capture 
both local and global node relationships.  

The Edge Convolution operator (EdgeConv) [34] was 
proposed to capture local geometric structures by 
constructing edge features that describe the relationships 
between a node and its neighbors. Additionally, [33] 
formulated a method for edge feature propagation using a 
learned attention vector to focus on important edge 
features. In this study we combine aspects from [33, 34] to 
develop a novel node and edge-feature aggregation and 
update functions. 

III. PROPOSED METHOD

A. Overview

The proposed bottom-up 2D human pose estimation
method consists of three stages: (1) keypoint detection, 
where we use the HigherHRNET model presented in [14] 
to localize joint coordinates in the form of a 2D Gaussian 
heatmap and obtain joint tags. These tags are used as node 
and edge features for a graph during the keypoint grouping 
stage. (2) keypoint grouping, a supervised and learnable 
keypoint grouping stage where a graph is constructed with 
all possible connections between the appropriate joints 
according to a chosen connection model. The graph is then 
processed with a graph-edge-classification network to 
classify each edge as either connected or not. (3) graph 
post-processing, which operates on disjoint subgraphs 
from the output graph iteratively to guarantee no 
duplicates keypoints in a human instance. The key 
highlight of our method is the learnability of the keypoint-
grouping stage, and the use of edge features. An overview 
of the proposed method is shown in Fig. 1. 

Fig. 1. Overview of our bottom-up pose estimation method. It includes: A backbone network (HRnet) where, features are extracted. Graph creation with 
node and edge features extracted from the feature maps. The proposed Graph Edge Classifier (GEC) module. Lastly, a post-processing step, where 
grouped keypoints are output. 
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B. Keypoint Detection

For keypoint detection we use HigherHRNet [14, 27,
32], a multi-resolution CNN architecture that takes an 
input image ܫ  and outputs predicted keypoint heatmaps 	 of size 14×320×320, one for each keypoint type. 
Additionally, it produces an associative embedding map ࣮ 
(tagmap), a 2D map where keypoints belonging to the 
same person have very similar values ∈ Թ (relationship 
encoding). Mean Squared Error (MSE) loss is used during 
training. Since keypoint detection is not the main focus of 
this paper, please refer to [14] for more information. Non-
Maximum Suppression (NMS) is applied to the keypoint 
heatmaps, with a cutoff threshold of 0.1, obtaining 2D 
coordinates for each keypoint. 

C. Keypoint-Grouping

1) Graph construction
A graph ܩ ൌ ሼܸ, ሽܧ  is constructed based on a

connection model ܭ ൌ ሼሺ݅, ݆ሻ where ݅, ݆  are joint typesሽ. 
We consider three connection models: basic, extended, 
and complete-graph (see Fig. 2). We use these three 
models during training and compare their performance in 
the results. Skip connections can improve grouping 
accuracy due to bypassing occluded intermediary joints.  

The created graph has a node set ܸ, that contains all the 
predicted keypoints at coordinates ܲ . Each node ݒ ∈ ܸ 
has a node-feature vector ݔ  which is a concatenation of 
the normalized Euclidean 2D coordinates  , a one-hot-
encoding of the keypoint type, and, a 7×7 pixels patch 
extracted from ࣮  centered at  . The edge set ܧ ൌ⋃ሺ,ሻ∈	 ୧ܸ ൈ ܸ  contains all the edges connecting nodes of 

type i to all nodes of type ݆ iff ሺ݅, ݆ሻ ∈ An edge ݁ .ܭ ∈  ܧ
has edge-feature vector ݔ extracted from ࣮ along a line 
drawn from   to  . Fig. 1 depicts an overview of our 
method, including the graph creation process. 

Fig. 2. The three connection types—basic, extended, and complete— that 
are used to construct the graphs. Nodes represent the detected keypoints, 
and edges represent the pairwise relationship between two nodes. The 
goal is to classify the edges into one of two classes. 

2) Node and edge features embedding
To carry out edge classification on a graph, we aim to

obtain node-feature embeddings such that vectors of 
keypoints belonging to the same person are closer to each 
other in embedding space than keypoints of other people. 
Hence, we introduce a GNN that encodes feature vectors 
of nodes and edges (see Fig. 3). Each layer of MPNN 
(referred to as MPNN-# in Fig. 3, where # is the layer 
number) updates node and edge feature vectors 
simultaneously. The node-features are updated according 
to the function: ܠᇱܑ ൌ max∈ࣨሺሻሺReLU	ሺܐદ	ሺܒܠ െ ᇱܒܑܠ‖	ܑܠ ሻሻ   (1)       ܑܠ

where, ࣨሺ݅ሻ  is the set of neighbors of the node ݒ 
including a self-connection, and, ࢨࢎ is a learnable linear 
transformation. 

Fig. 3. Graph neural network module, where node and edge features embeddings are obtained. The 1D convolution branch operates on edge features ۳܆ resulting in intermediate edge features ۳܆ᇱ . Node features ܄܆ and edge features ۳܆ᇱ 	are propagated through message-passing neural network (MPNN) 
layers, yielding node and edge feature embeddings ܄܆ᇱ  and ۳܆ᇱᇱ. 
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Initially, edge features ࢞  are passed through a 1D 
CNN for feature extraction and dimensionality reduction, 
obtaining intermediate features ࢞ᇱ . The output from the 
1D CNN branch is then used in conjunction with node-
features to be propagated through the MPNN layers. Edge-
features are updated in each MPNN layer according to the 
function: ࢞ᇱᇱ ൌ ReLUቀࢃ൫࢞ฮ࢞ᇱ ฮ࢞൯ቁ  ᇱ࢞      (2) 

where ࢃ is a learnable linear transformation. We use three 
MPNN layers (as shown in Fig. 3) to avoid over-
smoothing the signal on the graph, given that the 14-
keypoint model of CrowdPose dataset corresponds to a 
graph diameter of 6.  

The rationale for applying 1D convolutions on edge-
features extracted from AE maps [13] is as follows: AE 
maps are continuous 2D functions over their discrete 
image domain ܫ , as they are the result of pulling pixel 
values closer at keypoint locations belonging to the same 
person and pushing pixel values away at the locations of 
different people. This results in a feature map with pixels 
forming pseudo-level sets, where keypoints belonging to 
the same person have similar tag values.  Gradual changes 
between these tag values across keypoint locations 
represent valuable information, which is why edge-
features are considered in the node and edge-feature 
update functions.  

3) Edge classifier
To classify each edge in the input graph, we use an edge-

classifier network (see Fig. 4), which takes the 
concatenation of an edge-feature embedding  ࢞ᇱᇱ , the 
edge’s two node-feature embeddings ݔᇱ and ݔᇱ, and extra 
edge features ݔା  (including the normalized edge length 
and normalized edge angle ߠ ∈ ሺെߨ,  direction to the right). The output of the edge-classifier ݔ ሿ from the positiveߨ
network is an array of |E| ൈ 2, with each row representing 
the probability of an edge belonging to one of the two 
classes. This stage can be seen as a decoder for the 
embedded features. 

4) Loss function
The cross-entropy loss function is commonly used for

supervised classification tasks. It is a measure of how well 
a predicted probability (ݍ) approximates a true probability 
 with lower values -approaching zero- being better. It ,()
is defined as ܪሺ, ሻݍ ൌ ሻሺܪ  ሻݍ	‖	ሺܦ , where ܪሺሻ ൌ ∑௫∈ࣲሺݔሻ݈݃ሺ ଵሺ௫ሻሻ	  is the entropy of probability 

distribution p, which is a measure of the expected surprise 
of a discrete event X with probability distribution  p, and, 
the Kullback-Leibler divergence ܦሺ	‖	ݍሻ ൌ∑௫∈ሺݔሻ݈݃ሺሺ௫ሻሺ௫ሻሻ  that measures how much one 

distribution diverges from a reference distribution. We use 
a weighted cross-entropy loss function (ࣦ) (Eq. (3)), to 
mitigate the effects of class imbalance that occurs due to 
considering all possible connections between the 
keypoints. For example, when considering the edges 

between a head keypoint and all neck keypoints, only one 
edge is labeled as connected and all others are labeled as 
disconnected. This disparity in class ratios can cause the 
network to favor negative classification. Hence, the 
weighted cross-entropy loss function ࣦ is defined as: ࣦ ൌ ଵ|| ∑ ∑ െw୩ ൈ y୩୧ ൈ log൫p୩୧ ൯ଶ୩ୀଵ୧ୀଵ       (3) 

where  and ݕ  are the prediction and target probability 
vectors for an edge, ݇  is the class, and ܰ  is the set of 

edges in a batch. Weight vector ݓ ൌ ቂ	1, ேషேశ	ቃ is calculated 

from the frequencies of the positive and negative classes 
in the dataset. 

Fig. 4. Edge classifier network. The inputs for an edge ሺi, jሻ, inputs are: 
edge feature ܒܑܠᇱᇱ concatenated with its two node features ܑܠ and ܒܠ, with 
extra edge features ܒܑܠା. The output ܻ is the probability vectors for the 
classes of each edge. 

D. Graph Post-Processing

For an input graph ܩ, the ideal output is a set of disjoint
subgraphs ܵ, where each subgraph ݏ	 ∈ ܵ corresponds to 
the keypoints of one labeled instance, meaning that each 
subgraph contains at most one of each joint type. However, 
due to the imperfection of edge classification, a situation 
might arise in which subgraph ܪ ⊂  contains more than ܩ
one instance of a joint type (e.g., two heads), or a fusion of 
two or more people because a joint is connected to two or 
more instances of the same joint type. To address this, we 
introduce an edge pruning algorithm (see Algorithm 1) 
based on the minimum-cut algorithm [41]. The function 
INIT_WEIGHTS initializes all the edge weights of the graph 
(if they exist) based on cosine similarity ݓ ൌ݀൫࢞ᇱ, ᇱ൯࢞ ൌ ᇲቛ࢞ቛ		ᇲฮ࢞ᇲฮ࢞⋅ᇲ࢞  between features of its two nodes. 

SUBGRAPHS finds all connected components of the graph 
(subgraphs) creating new graph for each component. 
Subgraphs are processed from a queue, one at a time. 
HAS_DUPLICATES checks if a subgraph has duplicate 
keypoint types. Nodes of the subgraph are sorted by degree, 
and GET_DUPLICATES returns the first duplicate pair from 
the sorted node list. The MINCUT function partitions the 
subgraph and returns two new subgraphs with the removed 
edges. REMOVE_EDGES prunes edges from the main graph ܩ. If any of the two resulting subgraphs SG1 and SG2 have 
duplicates, then they also get added to the processing 
queue, otherwise process the next subgraph (Algorithm 1). 
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Algorithm 1: Min-cut for subgraph post-processing 
Require: |G| > 1 
 INIT_WEIGHTS(G) 

SGS ← SUBGRAPHS(G) 
for all SG ∈ SGS do 

Q.ENQUEUE(SG) ▷ Q: subgraphs queue
while Q.length ≥ 1 do
 SG_t ← Q.DEQUEUE() 
 if HAS_DUPLICATES(SG_t) then 
  sorted_SG ← DEGREE_SORT(SG_t) 
  (s,t) ← GET_DUPLICATES(sorted_SG) 
  (SG1, SG2, edges)←MINCUT(s, t, SG_t) 
  REMOVE_EDGES(EDGES, G) 
  if HAS_DUPLICATES(SG1) then 

Q.ENQUEUE(SG1)
  end if 
  if HAS_DUPLICATES(SG2) then 

Q.ENQUEUE(SG2)
  end if 
 end if 

  end while 
 end for  

IV.  RESULTS

In this section, we detail the dataset used, discuss the 
training hyperparameters, present comparisons between 
notable bottom-up human pose estimation methods and 
our approach, and list the software and hardware used to 
ensure reproducibility. 

A. Datasets

Training and testing were conducted on the CrowdPose
dataset [42], which consists of 20,000 images and 80,000 
human instances. The author of the dataset split it into 3 
sets; 10,000 images for training, 2,000 for validation, and 
8,000 for testing. We trained our models using both the 
training and validation sets and evaluated them on the test 
set. This split strategy is consistent with previous studies, 
allowing for a direct comparison of results. To prepare the 
CrowdPose labels for the Graph Edge Classifier (GEC) 
module, we applied a bipartite matching algorithm [43] 
between the predicted keypoints and the labeled joints in 
the dataset. Each predicted joint was matched to the 
nearest labeled joint of the same type and vice versa. Based 
on these assignments, an array of size |ܧ| ൈ 2 was created, 
where each row represents a binary classification of the 
graph’s connected edges (see Fig. 5). 

B. Training

The training of our Graph Edge Classifier network is
fully supervised, where each edge in the constructed graph 
is assigned a label indicating whether it is connected or not. 
During the forward pass, HigherHRNet-W48 [14] is used 
as the backbone network for keypoint detection, 
generating both keypoint heatmaps and tag maps A graph 
is then constructed from the detected keypoints, with node 
and edge features extracted at their corresponding 
locations in the tag maps. Labels are created based on the 
connections in the graph and the proximity of the detected 

keypoints to the ground truth. Finally, the GEC network 
groups the keypoints into human instances. 

HigherHRNet was trained for 320 epochs using the 
Adam optimizer with a learning rate of 10ିଷ , as 
recommended in [14]. Our keypoint grouping network was 
trained separately for 100 epochs, also using the Adam 
optimizer but with a base learning rate of 10ିହ  and a 
multi-step learning rate scheduler with a decay factor γ ൌ	0.5 with three milestones. Although the full architecture 
is end-to-end trainable, we trained the keypoint detection 
and keypoint grouping networks separately due to 
computational constraints. 

Fig. 5. Minimum weight bipartite matching for creating edge labels, 
where edge weights are Euclidean distances between two nodes. Only 
keypoints of the same type are connected, the closest pair are matched. 

C. Evaluation metrics and Results

We used the MS COCO evaluator to assess the
performance of the GEC model. The primary metric for 
evaluating Human Pose Estimation (HPE) models trained 
on COCO or its derivatives is Average Precision (AP). AP 
is calculated from the Object Keypoint Similarity (OKS) 
of joint detections at various thresholds, which is 
analogous to the Intersection over Union (IoU) metric used 
in object detection for bounding boxes. OKS ranges 
between [0, 1]. AP represents the average precision across 
ten OKS values ranging from 0.5 to 0.95. APହ and APହ 
represent precision at OKS thresholds of 0.5 and 0.75, 
respectively. Finally, the accuracy of the GEC network 
was computed for each experiment, with the results 
summarized in Table I. Evaluation results are reported on 
the CrowdPose test set, which was not seen by the model 
during training. 

The findings in Table I reveal two key patterns in the 
AP column. First, increasing graph connectivity improves 
precision scores. This can be elucidated by considering a 
node ݒ ∈ ܸ  and two communities of nodes, ܸ  and ܸ , 
belonging to person A and person B, connected by edge 
sets ܧ and ܧ, respectively. As the connections increase, 
the classifier has more chances of relating v to its correct 
more densely connected community and vice versa. With 
more connections, the classifier is more likely to correctly 
associate node ݒ  with its appropriate, more densely 
connected community. As a result, the classifier learns to 
favor nodes with a higher clustering coefficient (cc) [44], 
a measure of the node’s cliquishness with its neighbors 
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Essentially, the classifier prefers connecting a node to a set 
of nodes that are well-connected among themselves and 
avoids connections that would lower the cc value. 
Additionally, increased graph connectivity helps to bypass 
the issue of joint occlusion by directly linking distant 

keypoints without depending on intermediate junction 
keypoint detections. Finally, the inclusion of edge features 
enhances AP results across all connection variants of the 
proposed GEC model, as it enriches the classifier’s input 
by considering the feature space between connected nodes. 

TABLE I. COMPARISON OF VARIOUS BOTTOM-UP HUMAN POSE ESTIMATION METHODS AND THE PROPOSED GRAPH EDGE CLASSIFIER (GEC) NETWORK. 
EACH METHOD IS EVALUATED ON THE CROWDPOSE TEST SET AND ITS AVERAGE PRECISION (AP) SCORES ARE REPORTED. THE “EDGE FEATURES” 

COLUMN INDICATES WHETHER EDGE FEATURES WERE UTILIZED (✓) OR NOT (✗) IN EACH EXPERIMENT 

Method Edge features Connection model Backbone Input size ۾ۯ ۾ۯ ۾ۯૠ 

LitePose-S* [45] N/A N/A MobileNetV2 448×448 58.3 81.1 61.8 

LitePose-XS* [45] N/A N/A MobileNetV2 256×256 49.5 74.5 51.4 

CenterGroup* [46] N/A N/A HRNet-W48 640×640 67.6 87.7 72.7 

CoupledEmbedding* [47] N/A N/A HRNet-W32 512×512 68.9 89.0 74.2 

CoupledEmbedding* [47] N/A N/A HRNet-W48 640×640 70.1 89.8 75.6

HigherHRNet [14] N/A N/A HRNet-W48 640×640 59.4 82.8 62.4 

GEC-basic (proposed) ✗ Basic HRNet-W48 640×640 37.4 61.9 36.3

GEC-basic (proposed) ✓ Basic HRNet-W48 640×640 40.5 66.7 39.2

GEC-extended (proposed) ✗ Extended HRNet-W48 640×640 39.1 62.0 38.4

GEC-extended (proposed) ✓ Extended HRNet-W48 640×640 45.0 69.5 45.8

GEC-complete (proposed) ✓ Complete graph HRNet-W48 640×640 46.1 69.7 47.8

Note: N.B., methods marked by * are reported as in GRAPE [48]. 

Additionally, we compare our GEC model to other 
bottom-up methods with learnable keypoint-grouping 
components, with respect to the number of parameters and 
Multiply-Accumulate Operations (MACs). This 
comparison exclusively evaluates the keypoint-grouping 
modules of each method. The results are presented in 
Table II. While the number of MACs for CenterGroup [46] 
is not publicly available, it is reasonable to assume that its 
MACs count is significantly higher than that of the other 
methods due to its larger parameter count. Fig. 6 shows 
sample predictions made by the GEC network on 
randomly selected images from the CrowdPose test set. 

TABLE II. COMPARISON OF LEARNABLE KEYPOINT-GROUPING 

NETWORKS OF BOTTOM-UP POSE ESTIMATION METHODS 

Method # Parameters # MACs 
HGG [18] 0.300 M 4.6 G 

CenterGroup [47] 1.700 M - 
GEC (ours) 0.274 M 3.3 G 

Note: CenterGroup did not publish MACs data. 

D. Discussion

Traditional keypoint-grouping methods, such as the
Munkres algorithm used in [14, 45, 47] or greedy 
algorithms used to maximize path integrals such as in [11], 
function as non-learnable decoders for keypoint features in 
embedding space (e.g., associative embeddings [13]). 
These optimization algorithms group keypoints by 
minimizing an energy function (e.g., total distance 
between keypoint values in embedding space) without 
considering other factors, such as pose structure.  As a 
result, they may struggle when keypoints from different 
individuals have similar embedded values due to 
proximity or occlusion. In contrast, the proposed Graph 
Edge Classifier—a supervised learning approach to 
keypoint-grouping— rectifies this limitation by acting as a 

learnable decoder for keypoint and edge embeddings. 
Furthermore, since the grouping step in now learnable, the 
errors in keypoint association are propagated backward to 
the backbone network, providing feedback on the output 
embedding maps and improving feature extraction from 
images. By learning to classify graph edges, the network 
implicitly learns the structure of human poses. 

As shown in Table I, the inclusion of edge features in 
the MPNN significantly improves the Average Precision 
(AP) of the edge classifier network compared to not using 
them. AP scores also increased when using the extended 
or complete connection models, which was expected, as 
skip-connections bypass occluded keypoints. However, 
feature extraction when using the extended or complete 
connection models may slightly impact inference speed. 
Our network achieved an AP score of 46.1%, which is 
comparable to other state-of-the-art 2D bottom-up pose 
estimation methods. We attribute the slightly lower AP 
scores to the separate training of the backbone and the 
graph edge classifier, which was necessary due to 
computational limitations, particularly memory 
constraints. We plan to explore using MobileNet [46] as an 
alternative backbone network to reduce computational 
requirements and conduct end-to end training, and use 
DMoN pooling [49] to resolve issues with duplicate 
keypoints in subgraphs. Additionally, as shown in Table II, 
our model is lightweight, with only 0.274 million 
parameters, outperforming other learnable keypoint-
grouping methods in terms of the number of parameters. 

E. Materials and Devices

The method was implemented in Python, using pytorch
and pytorch-geometric packages. Training was conducted 
on a PC with 10GB of VRAM. 
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Fig. 6. Qualitative results of the GEC model on some images from the CrowdPose test set. 

V. CONCLUSION 

In this paper, we introduced a lightweight supervised 
learning method for grouping 2D keypoints in bottom-up 
human pose estimation, framing keypoint-grouping as a 
problem of graph edge classification. The proposed 
method leverages the message-passing neural networks 
framework, incorporating a novel node and edge-feature 
update functions to learn improved node and edge 
representations in a graph. The proposed graph edge 
classifier serves as a learnable decoder of keypoint and 
edge features in embedding space, in contrast to previous 
bottom-up pose estimation methods that relied on non-
learnable optimization algorithms—such as dynamic 
programming—to group keypoints by minimizing some 
energy function. This learnable approach to keypoint-
grouping also enhances the backbone network by 
providing feedback on the keypoint embedding map 
through the backpropagation of the grouping error to the 
backbone network.  

Future work could explore conducting end-to-end 
training of the backbone network and the graph neural 
network using MobileNet alongside the proposed graph 
edge classifier network. Additionally, transformer 
architecture might be considered as a potential method for 
clustering keypoints. 
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