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Abstract—The critical objective of image denoising is to 

provide a visually appealing image that maintains the 

essential features of its noisy equivalent. Magnetic 

Resonance (MR) images are acquired with degradations, 

and a common deterioration is Rician noise, which arises 

from variations in temperature or technical faults. Random 

noise reduces the clarity of images and raises the risk of 

incorrect diagnosis because it potentially conceals critical 

anatomical features and important diagnostic observations. 

Denoising optimizes the visibility of subtle lesions by 

minimizing noise and increasing diagnostic precision and 

sensitivity. Various existing denoised methods fail to 

attenuate the noise properly, leading to blurring or 

removing fine details from the processed images. Thus, this 

study proposes an Adapted Fast Gradient Projection (AFGP) 

algorithm for MR image denoising. The proposed algorithm 

can automatically compute the regularization parameter for 

each MR image via the local image information. Moreover, 

a detail-emphasized phase is applied at each iteration to 

maintain the structure and delicate features. The 

performance of the proposed AFGP algorithm is assessed 

with a dataset of real noisy images, compared with various 

denoising algorithms, and the results are evaluated using 

three sophisticated accuracy methods in addition to runtime. 

Ultimately, the proposed approach yielded satisfactory 

outcomes, surpassing all comparable techniques with 

relatively fast runtimes.   

Keywords—Magnetic Resonance Images (MRI), denoising, 

Rician 

I. INTRODUCTION

Magnetic Resonance Imaging (MRI) is an essential 

imaging modality that enables superior visualization of 

human tissue and organs [1]. The accuracy of medical 

diagnosis and computerized evaluation, such as 

classification, segmentation, and registration, is heavily 

influenced by the quality of the MRI image [2]. MRI 

images can experience degradation, including Rician 

noise, due to temperature variations and hardware 

issues [3]. This degradation results in the loss of fine 

details, hampers the extraction of useful information, and 

poses challenges for automated computerized 

assessments [2]. The denoising process is challenging in 
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image processing due to the hurdles of preserving image 

information such as texture, edges, and small features to 

achieve a high-quality output [4]. The primary objective 

of image denoising is to acquire a visually appealing 

image that retains the maximum level of detail from its 

noisy counterpart. Hence, the primary criterion for any 

image denoising technique is to attenuate the noise while 

maintaining the delicate features and edges without 

introducing unwanted artifacts [5]. 

Rician noise is a known type of noise that greatly 

obscures the vitality details in MRI images, and 

developing an effective denoising algorithm is a 

significant challenge. Despite various denoising concepts, 

most still need to reach a satisfactory level in practice due 

to the high computational cost, blurring, unwanted flaws 

generation, and the removal of small image details [6]. In 

MR images, noise can be reduced on both the hardware 

and software levels. At a hardware level, the noise is 

reduced by enhancing the performance of the MRI 

scanning equipment. In contrast, the software level 

utilizes an algorithm-based way to process the acquired 

data, offering a viable and efficient approach to attenuate 

the noise [7]. 

Bilateral filtering is an image-smoothing approach that 

maintains the edges’ strength. Originating in 1995, the 

research conducted by Aurich and Weule on nonlinear 

Gaussian filters marked the beginning of this field. Smith 

and Brady subsequently rediscovered it as a component 

of their SUSAN framework, and after that, Tomasi and 

Manduchi gave it its present name. Since then, bilateral 

filtering usage has experienced fast growth and is 

currently widespread in image-processing applications. 

Due to its output being a weighted average of its inputs, 

this filter is classified as a nonlinear smoothing technique. 

Furthermore, it operates identically to Gaussian 

convolution by generating a weighted pixel average. Yet, 

the distinction lies in the fact that this filter has 

considered variations in intensity to maintain the 

sharpness of edges and intricate features. A key benefit of 

the bilateral filter is its ability to determine the similarity 

between two pixels by assessing their spatial distance and 

the similarity of their intensity levels [8]. 

The Total Variation (TV) concept has been broadly 

used to address several imaging challenges, including 

image denoising. It was first introduced by Rudin, Osher, 
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and Fatemi in 1992. The primary purpose of the TV 

concept is to attenuate the image noise. It aims to identify 

the variation in intensity (energy) between adjacent pixels 

and then reduce it by utilizing an iterative optimization 

method, where the denoised image is updated repeatedly 

until it meets a specified condition. This task is achieved 

by minimizing TV and the discrepancy between the input 

noisy and denoised images [5]. The Fast Gradient 

Projection (FGP) method is a rapid optimization approach 

that utilizes gradients and TV to solve denoising issues. It 

was first proposed by Beck and Teboulle in 2009 [9] to 

address optimization challenges related to constraints. 

The FGP method may effectively reduce the variations 

while guaranteeing the denoised image meets specific 

constraints, such as similarity in details to the noisy input 

image. 

Traditional optimization strategies are computationally 

intensive for large-size images. Accordingly, the FGP 

method is beneficial since it utilizes gradient information 

and projects it onto a viable set while updating the 

denoised image, offering rapid convergence [9]. Still, 

FGP tends to over-smooth the MRI image, leading to the 

loss of small image details. It also uses a constant 

regularization parameter (λ), and choosing a suitable 

value of λ for every image is uneasy. Therefore, this 

paper presents an adapted Fast Gradient Projection 

(AFGP) algorithm to denoise MRI images while 

maintaining the tiny features without excessive 

smoothing or blurring of the results. The designed AFGP 

has two clearly defined stages. Firstly, each iteration 

includes a detail-emphasis phase to augment the high-

frequency components. A second method involves the 

automated calculation of λ using the image’s local 

information. The main contributions of this study are the 

following: (i) rely on image information to calculate λ 

automatically. (ii) optimize the algorithm by reducing the 

number of required parameters. (iii) A low-complexity 

detail-emphasizing step is implemented at each iteration 

to preserve the small image details and improve the edge 

representation. By attaining these contributions, better 

denoising results are obtained. The remaining sections of 

this research are structured as follows: Section II provides 

a concise overview of the related work. Section III 

explains the original and the developed algorithms in 

detail. Section IV presents the obtained qualitative and 

quantitative results, demonstrating the performances of 

the proposed algorithm against other algorithms. Section 

5 provides the final inference and conclusions. 

II. LITERATURE REVIEW 

Over the past several years, many denoising algorithms 

with dissimilar notions have been introduced. In 2014, a 

Weighted Nuclear Norm Minimization (WNNM) 

algorithm was presented [10]. It utilized an iterative 

optimization approach to identify the solution that 

minimizes the weighted nuclear norm of a matrix, which 

represents the underlying structure of the image being 

denoised. However, this method needs more adaptability 

to filter single values, reducing its applicability and 

affecting the denoising capabilities because of its 

ineffectiveness in capturing the subtle characteristics of 

real-world images. In 2015, a trilateral filter was 

introduced [11]. This filter utilizes a Rough Set 

Theory (RST) to generate edge maps and class labels at a 

pixel level. These maps and labels are then employed to 

enhance the effectiveness of bilateral filters. However, 

RST may have difficulties dealing with complex noise 

patterns frequently found in real-world images. Moreover, 

it may require significant computational costs, especially 

when dealing with high-resolution images, leading to 

long processing times. 

In 2016, a nonlocal self-similarity and Low-Rank 

Approximation (LRA) algorithm was developed [12]. It 

approximates group matrices using the block-matching 

technique and Singular Value Decomposition (SVD), 

keeping just a small number of critical singular values 

and their accompanying vectors. This approach uses the 

optimum energy compaction aspect of SVD. However, it 

lacks generality and may exhibit suboptimal performance 

when the noise characteristics stray substantially from the 

assumptions inherent to the methodology. In 2018, a new 

method was reported that utilizes Second-order Non-

convex Total Variation (SNTV) [13]. The model 

efficiently minimizes the staircase artifact by exploiting 

the benefits of higher-order non-convex regularization 

and overlapping group sparsity regularization. However, 

it must balance minimizing noise and maintaining the 

image information, as over-denoising can occur and 

remove the small image details. 

In 2019, a Statistical Nearest Neighbors (SNN) 

concept was introduced [14]. In SNN, the selection of 

neighbors depends on how close their squared distance 

from the reference patch is to its expectation. This 

reduces the noise-free patch prediction error estimation, 

which enhances image quality and minimizes the 

computational costs more than the traditional nearest 

neighbors approach. However, SNN has a limitation in 

preserving image information, causing detail blurring in 

the low-contrast image when denoising using more than 

one NN. Moreover, it may not offer a conception of the 

optimal number of neighbors needed for various types of 

images or noise levels. In 2019, an Iterative Mean 

Filter (IMF) was presented [15]. In the IMF framework, 

the approach analyzes a specific window of pixels with a 

set size of 3×3. Instead of using the median value, it 

calculates the constrained mean of the window to 

determine the new gray value for the central pixel. 

However, it is constrained with a fixed-size window, 

which may need help to adapt to varying noise densities 

across different regions of an image, potentially leading 

to suboptimal denoising outcomes in areas with 

significant noise characteristics. 

In 2020, an Adaptive Total Variation (ATV) based 

algorithm was proposed [16]. It helpfully attenuates noise 

and maintains the image structures. Its drawback is the 

intricacy involved in selecting parameters. Inadequate 

choice of parameters may result in better-quality 

outcomes. Furthermore, the adaptive multiscale 

parameter estimation and inverse gradient computations 

are accompanied by computational complexity, 

Journal of Image and Graphics, Vol. 13, No. 2, 2025

141



potentially leading to longer processing times for large-

scale images. In 2021, a Variational Mode 

Decomposition (VMD) based algorithm was 

delivered [17]. This approach efficiently exploits VMD 

principles to improve quality by reducing the intensity of 

rician noise. However, in addition to this technique’s 

computational complexity, its processing abilities depend 

on multiple essential variables, making the selection of 

parameters more challenging. 

In 2021, a fuzzy-based non-local mean filter was 

introduced [18]. This filter detects non-local comparable 

pixels by employing a specific fuzzy function. 

Consequently, these corresponding pixels are utilized to 

create pixels devoid of noise. A significant limitation of 

this technology is the improper restoration of structural 

information from a noisy image. In 2022, a score-based 

reverse diffusion sampling concept was presented [19]. It 

utilizes a deep neural network model for the denoising 

process as well. However, the reverse diffusion 

mechanism is inherently slow, requiring several iterations 

through the neural network to get optimal outcomes, 

resulting in high processing times. In 2023, an enhanced 

intuitionistic fuzzy adaptive filter was introduced [20]. 

The model filters through pixel categorization into 

membership and non-membership grades. It also 

improves the quality and edges by enhancing the contrast 

via histogram equalization, yet processing takes longer 

than traditional filters. In 2023, two deep learning 

frameworks, ResNet50 and Inception V3, were presented 

in [21]. These frameworks are specifically designed to 

classify brain MRI images. This work integrates 

fundamental methodologies, including early stopping and 

reduce LR on plateau, to enhance the models through 

hyperparameter optimization. This approach involves 

augmenting the model by developing additional layers to 

improve performance. 

In 2024, a Morphological Component Analysis (MCA) 

based model was delivered [22]. It applies the variance-

stabilizing transformation to reduce the noise and 

preserve details. Moreover, by setting an adaptive 

threshold, the MCA concept is used to handle the 

interference between the noise and the valuable 

information. Although this method well-preserves 

textural details, it faces challenges when handling high 

noise levels. In 2024, a particle swarm optimization based 

on a principal component analysis algorithm is 

presented [23]. It traverses the intensities of pixels, 

reduces the calculations, and expands the search volume 

to cover the entire image to deliver more efficient 

denoising. This method uses a Rician noise level 

approximation model that can affect the denoising 

abilities and result in suboptimal results. Previous studies 

have shown that various concepts have been utilized, 

ranging from simple to complex, with different 

computational costs. Still, most of these algorithms have 

drawbacks, and the opportunities remain to develop a 

new algorithm that is fast and reliable, preserving edges 

and small image information more efficiently. 

III. RESEARCH METHOD 

A. Proposed Algorithm  

The main aim is to adapt the original FGP algorithm to 

handle the regularization parameter (λ) issues and 

excessive smoothing. This section explains the original 

FGP algorithm [9], and then the performed modifications 

are given in detail. The original FGP aims to 

progressively attenuate the image noise by employing 

gradient projection and acceleration models to achieve 

the needed convergence. Accordingly, it utilizes an 

accelerated gradient descent approach to iteratively 

update the gradient and applies projection to preserve 

constraints. This process finally reconstructs a denoised 

image by reducing the total variations. The output 

denoised image x is computed by subtracting the 

regularized gradient from the input noisy image y. This 

phase converts the most beneficial gradient in the 

direction to the original variable using the following 

approach: 
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where λ is the Regularization parameter; D is the 

differential method, which calculates the gradient of the 

image; DT is the adjoint of D; The expression (1/8λ) 

serves as a scaling factor to normalize the step size along 

the gradient ascent direction, which is chosen to ensure 

the FGP algorithm better converges; (pk,qk) represents the 

current estimation of the denoised image’s gradient, and 

its calculation includes the gradient descent step followed 

by the projection step onto the feasible set c as described 

in Eq. (1). tk+1 is the updated momentum parameter that 

controls the influence of the previous update; (rk,sk) 

denotes an auxiliary variable, which is updated in each 

iteration to accelerate the FGP convergence by using the 

momentum parameter to combine the current estimation 

of the denoised image’s gradient and its previous 

estimation. The output denoised image is computed using 

the following equation: 

( )( ),c k kx P y D p q= −                        (4) 

To know the denoising abilities of the original FGP 

algorithm, it was applied to various real-degraded MR 

images, and samples of the attained results are given in 

Fig. 1. 
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Fig. 1. Processing real-degraded MR images with the original FGP algorithm. 1st row: Real-noisy MR image; 2nd row:  

Denoised using the original FGP. 

The images processed using the original FGP 

algorithm exhibit unbalanced noise attenuation with 

apparent smoothness and blurring effects. This can 

remove small yet crucial medical information, leading to 

undesirable quality results. Still, the FGP has a low 

computational cost, pinpointing its vast development 

potential to enhance its processing abilities. Thus, an 

Adapted Fast Gradient Projection (AFGP) algorithm is 

introduced, aiming to denoise degraded MR images 

efficiently while preserving the minor details without 

over-smoothing or blurring the results. The developed 

AFGP includes two distinct modifications. The first is 

utilizing a detail-emphasis step in each iteration to 

enhance the high-frequency elements. The second is 

computing λ automatically using the image’s local 

information since λ value balances the trade-off between 

detail preservation and noise attenuation, in that a lower 

value keeps the noise and preserves more details while a 

higher value performs the opposite. 

As mentioned earlier, the value of λ dramatically 

influences the performance of FGP, and the main aim 

here is to achieve a good balance between the impact of 

the fidelity term and the regularization term in TV on the 

calculated solution [24]. A direct relationship exists 

between the standard deviation (σ) and the Mean TV 

norm (MTV) value. It is possible to get an approximate σ* 

value from the noisy observation to be utilized in the 

iterative estimation of λ. Thus, the first step in the AFGP 

algorithm involves the approximation of λ value based on 

the MTV notion using the input image y using the 

following equations: 

( )
( )
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y

n n
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                           (5) 
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where TV(y) is the total variation of image y, which 

equals to sum[abs(D(y))]; s is a scaling value, which is 

initially set to (0.58); b is a constant value, which is 

initially set to (0.01); σ* is sigma approximate value. 

Throughout the denoising process, the value of λ updates 

iteratively based on the MTV of the updated result (rk,sk) 

using the following equations: 

( )
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( ) *d  = +                           (11) 

where d is a constant value, set to (0.35); η is a small 

constant, initiated at zero and updated at each iteration to 

activate λ better; s and b are also constant values, set to 

0.58 and 0.01, respectively; n1 and n2 are image 

dimensions. A detail-emphasis step is applied at each 

iteration to overcome the loss of minor details and 

enhance the high-frequency elements. To perform that, an 

initial step before the iteration loop is implemented 

involves smoothing the image y with the classical 

bilateral filter to produce the smoothed image (BF). 

During the iterations, BF is subtracted from the estimated 

image at each iteration to obtain the highlights image. 

The output is added back to the estimated image to 

emphasize the details. At the first iteration, (x_prev = BF), 

the detail emphasizes step can be done iteratively using 

the following equations: 

( )( ),k kx y D p q= −                       (12) 

( )_x x x x prev= + −                       (13) 

_x prev x=                            (14) 
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Adding the two above modifications to adapt the 

algorithm allows a balance between details preservation 

and denoising power to be performed, benefiting in 

avoiding the over-smoothing effect and reducing the blur 

artifact while keeping the minor details and semi-

automating the algorithm. In addition, these 

modifications allowed faster convergence, leading to less 

iteration utilization and quicker production of the output 

image.   

B. Experiment Setup and Evaluation Criteria 

This section presents the necessary empirical 

preparation to apply the developed AFGP algorithm and 

validate its efficiency. The algorithm’s performance is 

assessed using real-noisy images obtained from 

https://www.ctisus.com/, which is deemed one of the 

leading websites for radiological images administrated by 

the School of Medicine at Johns Hopkins. To assess the 

visual quality of denoised images, the Perception-based 

Image Quality Evaluator (PIQE) [25], 

Blind/Referenceless Image Spatial Quality Evaluator 

(BRISQUE) [26], and Naturalness Image Quality 

Evaluator (NIQE) [27] metrics were selected. The PIQE 

metric relies on the local features to predict quality and 

measures the visibility of distortion in the image without 

requiring any training data. The BRISQUE metric 

consists of two steps. The first involves extracting 

entropy and energy features using Gabor filters, while the 

second determines parameters to assess the quality using 

the linear least squares model. BRISQUE measures the 

perceptual quality of the image. The NIQE measures the 

naturality by evaluating the deflection from statistical 

patterns in natural images. The distorted image quality is 

determined by measuring how the distorted image differs 

from the statistical properties of the model. A lower score 

indicates better performance for all metrics, i.e., less 

distortion visibility for PIQE, better best perceptual 

quality for BRISQUE, and better naturality for NIQE. All 

algorithms were implemented using MATLAB R2023a 

on a laptop with an Intel Core i7-10510U CPU and 16 

GB of RAM. 

IV. RESULT AND DISCUSSION 

A. Experiment Results 

In the following part, we conduct experiments on real-

noisy images from the Ctisus dataset to show the 

performance of the developed AFGP algorithm in MRI 

image denoising. Figs. 2–5 depict the original distorted 

MRI images and their denoised observations using the 

proposed AFGP algorithm. In all experiments, we use 

fixed parameter values which were taken from the ranges 

established by Wang et al. [28], to direct our selection 

procedure in this study. Although that study proposed 

several values for each parameter, we chose to 

concentrate on a singular value for each parameter, 

considering our particular circumstances and the 

effectiveness of the achieved outcomes. Through 

intensive experimentation, we have determined that a 

scaling value (s) of 0.58, a constant value (b) of 0.01, 

lambda of 1.5 × σ*, and (d) of 0.35 resulted in the highest 

performance in our MRI denoising tasks. The decision 

was taken to achieve a satisfactory compromise between 

computational efficiency and denoising quality, 

guaranteeing optimal outcomes while reducing 

processing time.  

From Figs. 2 to 5, the images denoised by the AFGP 

algorithm exhibited acceptable details, as the apparent 

noise is effectively attenuated without massively blurring 

the results while preserving the minor information from 

being removed. It was also noticed that the AFGP 

algorithm can work with different types of MR images 

and successfully attenuate noise. This is vital as it is a 

step in providing efficiency and validating development. 

 

 

Fig. 2. Top row: Real noisy MRI image; bottom row: Denoised using the proposed algorithm. 
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Fig. 3. Top row: Real noisy MRI image; bottom row: Denoised using the proposed algorithm. 

 

Fig. 4. Top row: Real noisy MRI image; Bottom row: Denoised using the proposed algorithm. 

 

Fig. 5. Top row: Real noisy MRI image; bottom row: Denoised using the proposed algorithm. 

B. Comparison Results and Discussion 

The denoising capability of the proposed algorithm is 

also assessed by comparing it to other existing algorithms, 

such as the original FGP [9], the Low-Rank 

Approximation (LRA) [12], Second-order Non-convex 

Total Variation (SNTV) [13], adaptive total variation 

(ATV) [16], a Statistical Nearest Neighbors (SNN) [14] 

and Weighted Nuclear Norm Minimization 

(WNNM) [10]. Figs. 6 to 9 display the comparison results. 

Tables I to IV present the recorded accuracy readings and 

the implementation times. Figs. 10 to 13 show the 

recorded scores as charts. The comparison results present 

dissimilar performances obtained through the evaluation 

scores. The lowest scores in PIQE, BRISQUE, NIQE, 

and implementation time denote the best performances. 

In terms of performance analysis, the original FGP 

recorded relatively short runtimes; nevertheless, it tended 

to blur the output noticeably when the noise was reduced, 

which resulted in a reduction in clarity and a smaller 

number of details. Because of this, it received an average 

score in PIQE, high in the BRISQUE, and unacceptable 

in the NIQE. The SNN method achieved the second 

slowest processing time and generated abnormal visuals 

due to visible noise resulting from its failure to denoise 

the images. Therefore, it achieved the worst NIQE value 

and displayed high PIQE and BRISQUE values. As for 

WNNM, although it received a lower NIQE score, it 

provided relatively blurred results with apparent noise. 

Therefore, it recorded high PIQE and moderate 

BRISQUE values and had the longest processing time. As 

for the LRA method, despite achieving low scores in 
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PIQE and BRISQUE, a moderate score in NIQE, and a 

long implementation time, the LRA maintained the edges 

and features of the picture without causing considerable 

blurring. It also offered adequate naturalness. 

 

 

Fig. 6. Comparison results (Part 1): (a) Real noisy image; other images are denoised by (b) Original FGP; (c) SNN; (d) WNNM; (e) LRA; (f) SNTV; 

(g) ATV; (h) Proposed AFGP. 

 

Fig. 7. Comparison results (Part 2): (a) Real noisy image; other images are denoised by (b) Original FGP; (c) SNN; (d) WNNM; (e) LRA; (f) SNTV; 

(g) ATV; (h) Proposed AFGP. 

 

Fig. 8. Comparison results (Part 3): (a) Real noisy image; other images are denoised by (b) Original FGP; (c) SNN; (d) WNNM; (e) LRA; (f) SNTV; 

(g) ATV; (h) Proposed AFGP. 
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Fig. 9. Comparison results (Part 4): (a) Real noisy image; other images are denoised by (b) Original FGP; (c) SNN; (d) WNNM; (e) LRA; (f) SNTV; 

(g) ATV; (h) Proposed AFGP. 

TABLE I.    PIQE↓ SCORES 

Fig. FGP SNN WNNM LRA SNTV ATV AFGP 

4 76.2958 77.2840 76.3482 62.4283 63.3504 93.7900 28.9644 

5 90.3729 85.2027 84.2386 84.3028 82.1730 94.3436 48.2884 

6 76.6568 86.1273 85.7613 84.3572 84.0107 94.4030 56.6182 

7 86.7067 85.1520 85.4231 83.7403 83.1301 92.0210 43.7544 

Av. 82.5081 83.4415 82.9428 78.7072 78.1661 93.6394 44.4064 

TABLE II.    BRISQUE ↓ SCORES 

Fig. FGP SNN WNNM LRA SNTV ATV AFGP 

4 49.3106 42.3953 37.7132 39.4671 50.3646 62.6319 40.4242 

5 50.5066 58.5388 59.2168 58.6633 46.8095 60.1484 50.5175 

6 51.4529 54.3569 55.0226 54.4177 49.8977 49.8204 51.0499 

7 52.8846 52.9807 49.3981 48.7911 48.8515 57.2473 46.0833 

Av. 51.0387 52.0679 50.3377 50.3348 48.9808 57.4620 47.0187 

TABLE III. NIQE ↓ SCORES 

Fig. FGP SNN WNNM LRA SNTV ATV AFGP 

4 4.6037 4.5884 4.4862 3.9958 4.4973 4.8122 4.0217 

5 5.3681 5.3822 5.5768 5.6561 5.0018 5.3014 4.9690 

6 5.7460 5.4906 5.1977 5.4363 5.5766 5.0880 5.2298 

7 5.5003 5.7638 4.9509 5.1727 5.1748 5.1107 4.8964 

Av. 5.3045 5.3063 5.0529 5.0652 5.0626 5.0781 4.7792 

TABLE IV.   RUNTIMES ↓ IN SECONDS 

Fig. FGP SNN WNNM LRA SNTV ATV AFGP 

4 1.7917 41.2395 57.8590 20.4008 10.4559 17.3704 1.6188 

5 6.9486 143.0602 193.8813 69.4522 26.9957 76.9515 5.2180 

6 6.4454 132.2607 184.9277 64.4699 26.4337 61.6806 4.7561 

7 7.3534 148.7217 203.6490 75.5884 28.0668 60.2748 5.4101 

Av. 5.6348 116.3205 160.0792 57.4778 22.9880 54.0693 4.2508 
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Fig. 10. Chart of the average PIQE values. 

 

Fig. 11. Chart of the average BRISQUE values. 

 

Fig. 12. Chart of the average NIQE values. 

 

Fig. 13. Chart of the average runtimes. 

The SNTV and ATV algorithms rely on the TV 

concept. SNTV performed better than the ATV regarding 

average accuracy measures, obtaining lower scores with 

the three metrics. The SNTV produced images with 

satisfactory perceptual quality and attenuated the noise 

properly yet introduced noticeable blurring to the results. 

Thus, it was recorded as the second-best in PIQE and 

BRISQUE, with low scores in NIQE. Also, it had a 

shorter implementation time than the ATV algorithm. 

The ATV algorithm provided artificial-like results 

because it introduced over-smoothing, which caused 

blurring and loss of details. Therefore, it obtains the 

highest values in PIQE and BRISQUE with high values 

in NIQE. The proposed AFGP algorithm performed 

better, recording the lowest in PIQE, BRISQUE, and 

NIQE, with the fastest implementation times, since the 

denoised results exhibited more details, retaining almost 

all the details. Also, although some mathematical 

computations were added to AFGP, it required lower 

iterations to reach the desired results, leading to less 

implementation time. This is important as rapid and 

effective denoising has been introduced in this study that 

outperformed many existing algorithms in the field. 

C. Statistical Test to Validate the Improvement 

Paired statistical tests are the most reasonable method 

for comparing the efficiency of the two denoising 

methods. For each metric, to choose which test (t-test or 

Wilcoxon Signed-Rank) will be implemented to test if the 

two methods are significantly different in performance, 

the normality test of the differences between the two 

methods has been carried out by the Shapiro-Wilk test 

under the null hypothesis H_0: the defenses came from a 

normally distributed population. Since the p-values 

corresponding to each metric are less than p < 0.05, the 

H_0 will be rejected. In other words, the differences 

between the pairs in all metrics are not normally 

distributed. Since a normality assumption is not met, a 

non-parametric test called the Wilcoxon Signed-Rank test 

will apply under null hypothesis H_0: There is no 

significant difference between the two denoising methods 

for each metric.  Finally, a Cohen test has been carried 

out to assess the magnitude of the difference between the 

two methods. Table V below illustrates the corresponding 

values and p-values values for each metric obtained after 

denoising the images by the two methods, FGP and 

AFGP. 

 

TABLE V.   ILLUSTRATE THE PAIRED STATISTICAL TESTS OF THE FGP AND AFGP DENOISING PERFORMANCE ACCORDING TO EACH EVALUATION 

METRIC PIQE, BRISQUE, AND NIQE 

Tests Shapiro-Wilk Wilcoxon Signed-Rank Cohen-d 

Metrics 

FGP- AFGP FGP- AFGP   FGP- AFGP 
confidence interval 

95% 

Test 

Value 
P-value 

Test 

Value 
P-value 

Median 

of FGP 

Median 

of AFGP 
d-estimate 

Size 

effect 
lower upper 

PIQE 0.97643 4.294e-6* 78577 2.2e-16* 87.01767 53.39911 3.062648 Large 2.8031 3.32210 

BRISQUE 0.97078 3.506e-07* 58565 1.4e-15* 51.18949 50.11056 0.4805882 Small 0.3624 0.5986 

NIQE 0.99002 0.008115* 80195 2.2e-16* 7.104918 4.962598 4.354305 Large 3.9532 4.7553 

Note: *Since the calculated p-values are less than 0.05, the all-corresponding null hypothesis will be rejected. 

Journal of Image and Graphics, Vol. 13, No. 2, 2025

148



First, the p-values for the three metrics are less than 

0.05, which means no evidence that the differences 

between the methods by the whole metrics came from 

normal distribution (The null hypothesis was rejected). 

As for the Wilcoxon Signed-Rank test, the metrics 

recorded p-values of less than 0.05. That means there is 

evidence that differences in the performance between the 

methods exist, and since the median of the AFGP in the 

three metrics is less than the median of the FGP, then 

AFGP outperforms FGP in all metrics. The Cohen-d test 

estimates the magnitude (size effect) of this performance. 

According to the d-estimated value of this test, the large 

impact of the improvement on the FGP method has been 

confirmed in two metrics, PIQE and NIQE, except with 

the BRISQUE metric, which recorded a small effect. 

However, AFGP still outperformed since the d-estimated 

of all matrices falls into the bounds of the confidence 

intervals. 

V. CONCLUSION 

This study presents an adapted FGP algorithm for MR 

image denoising. The algorithm is adequately adjusted to 

overcome the problem of the original counterpart and 

provide better quality results deprived of over-smoothing 

or high blurring by automating the computation of the 

regularization factor and adding a detail-emphasis step. 

The AFGP algorithm is tested with various real-noisy 

images to assess its denoising abilities and then compared 

against the original and five other algorithms to 

benchmark its performance. The results are then 

evaluated using three advanced algorithms in addition to 

recorded processing speed. Accordingly, the AFGP 

algorithm performance surpassed the performances of 

other algorithms while recording low computational 

times, removing the noise efficiently while retaining the 

minor details without massively amplifying the blur. As 

for limitation, we observed that utilizing blurred images 

as input to our denoising method significantly reduces its 

efficacy. The blurred MRI images compromise AFGP 

capacity to achieve precise restoration and enhance image 

quality. This decline in performance arises due to the 

blurriness that conceals the important details and 

structures in the image, thereby posing a challenge for the 

denoising method to differentiate between noise and 

authentic anatomical features. Hence, the resulting 

images frequently need more detail and clarity. The 

AFGP can be further improved for future development by 

utilizing advanced mathematical models that help 

increase the efficiency of noise removal in the presence 

of blur and reduce the needed iterations to reach the 

desired results. 
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