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Abstract—The escalating global concern over extensive food 
wastage necessitates innovative solutions to foster a net-zero 
lifestyle and reduce emissions. An effective home composter 
presents a convenient means of recycling kitchen scraps and 
daily food waste into nutrient-rich, high-quality compost. To 
capture the nutritional information of the produced compost, 
we have created and annotated a large high-resolution image 
dataset of kitchen food waste with segmentation masks of 19 
nutrition-rich categories. Leveraging this dataset, we bench-
marked four state-of-the-art semantic segmentation models 
on food waste segmentation, contributing to the assessment 
of compost quality of Nitrogen, Phosphorus, or Potassium. 
The experiments demonstrate promising results of using seg-
mentation models to discern food waste produced in our 
daily lives. Based on the experiments, SegFormer, utilizing 
MIT-B5 backbone, yields the best performance with a mean 
Intersection over Union (mIoU) of 67.09. Class-based results 
are also provided to facilitate further analysis of different food 
waste classes.

Keywords—semantic  segmentation, deep learning, food 
waste, compost, nutrients

I. INTRODUCTION

Food waste has significant i mplications f or o ur lives, 
the environment, economic consequences, and the global 
community. Taking Canada as an example, it is reported that 
about 396 kilograms of food annually are wasted or lost per
capita, making it one of the top food waste generators in the 
world [1]. In Canada, more than 32% of our methane (CH4) 
production is contributed by food waste in landfills [2]. 
Turning food waste directly into organic compost is a great 
way to incentivize this transition into a net-zero sustainable
lifestyle for each Canadian household while contributing to
cutting down our carbon emissions and meeting the goals 
our government has set for the Paris Agreement, supporting
national efforts to meet environmental targets and contribute 
to a more sustainable future.

To tackle this intricate issue, we have engineered a
home composter named LILA, designed to seamlessly, 
efficiently, and inconspicuously transform kitchen-generated
food waste into organic compost, as depicted in Fig. 1.
LILA excels in consistently sorting waste, conditioning, and
converting food waste into fully mature organic compost.
This system offers a more effective and odor-free solution
for recycling food waste, and the transformation of food
waste to organic compost presents a promising solution,

Manuscript received June 19, 2024; revised July 5, 2024; accepted 
August 6, 2024; published March 21, 2025.

Fig. 1. The home composter would conveniently allow households to
recycle their kitchen scraps and daily food waste into high-quality compost
rich in nutrients. This paper aims to study the feasibility of using semantic
segmentation techniques to identify food waste classes, enabling the
capture of nutritional information from food waste.

helping to mitigate waste generation and greenhouse gas
emissions, and fostering a more sustainable and environ-
mentally conscious lifestyle.

The primary objective of this paper is to empower house-
holds to capture crucial nutritional information, specifically
the NPK (Nitrogen, Phosphorus, and Potassium) values,
associated with the compost generated by the composter.
This information equips users with the knowledge to judi-
ciously utilize the compost, fostering enhanced agricultural
yields and the remediation of contaminated soil. Since
various types of food waste, after the composting process,
yield distinct NPK values, a key aspect is the automatic
recognition of the type of food waste and its corresponding
quantity. To achieve this, we propose to utilize computer
vision techniques for the segmentation and recognition of
different classes of food waste based on their images. This
study endeavors to explore the effectiveness and feasibility
of employing semantic segmentation techniques for this
specific task.

The main contributions of this paper are summarized
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below.
• We have compiled and annotated a dataset from high-

resolution images collected from the household kitchen
scraps and food waste generated after meals. We fur-
ther narrowed down the initially diverse food waste
classes to 19 nutrition-rich categories, facilitating the
estimation of final NPK values produced by the in-
house composter.

• We conducted a performance evaluation of four state-
of-the-art semantic segmentation models on the gener-
ated food waste dataset. This benchmarking process
allowed us to capture nutritional information from
food waste and assess the models’ effectiveness in this
context.

• The benchmark results underscore the effectiveness
of semantic segmentation methods in discerning food
waste within real household kitchens. This capability
facilitates the straightforward capture of NPK values
associated with food waste, streamlining the process of
recycling it into compost through a home composter.

II. RELATED WORK

Deep neural networks have exhibited remarkable success
in diverse computer vision domains, adeptly handling tasks
such as image classification [3], object detection [4], seg-
mentation [5] [6], and recognition [7]. Prominent network
models within this domain encompass Convolutional Neural
Networks (CNNs) and Vision Transformers [8] [9], both
extensively utilized in practical applications across various
domains such as multimedia [10], depth estimation [11],
agriculture [12], medical image analysis [13] [14] [15], and
beyond.

In recent years, these techniques have found application
in discerning food images for health and nutrition-related
analysis tasks. Significantly, distinctions arise based on the
associated task of the dataset and the level of annotation,
encompassing categorizations such as dish, ingredient, or
recipe. Two noteworthy public image segmentation datasets,
namely UECFoodPix and UECFoodPixComplete, offer an-
notations at the dish level and collectively comprise 10,000
images [16]. These datasets prove to be well-suited for
fundamental dish classification tasks [17], contributing to
the progression of food-related research within the computer
vision landscape.

Addressing the need for a comprehensive food image
dataset, FoodSeg103 was introduced, featuring more than
104 ingredient food classes and a total of 7,118 images
[18]. This dataset is distinctive in its annotation for se-
mantic segmentation, providing detailed annotations at both
the ingredient and dish levels. Notable alternatives include
ETHFood101, Recipe1M, and Geo-Dish, primarily designed
for dish classification and recipe generation.

Although these datasets serve as valuable benchmarks, it
is essential to acknowledge that their emphasis is on entire
meals depicted in images rather than on the aspect of food
waste. Furthermore, images depicting food waste present a
visual contrast, posing a challenge in repurposing existing
datasets for this particular task. It is noteworthy that, to date,
no publicly available dataset dedicated explicitly to food
waste exists in the literature. This study is the first endeavor
that is dedicated specifically to food waste segmentation.

III. METHOD AND EXPERIMENT

In this section, we will present the dataset we collected
to train the learning models, the neural network models we
implemented and compared, as well as the experimental
details we conducted.

A. Dataset

We gathered kitchen food waste from our clients and
captured high-resolution images using smartphone cameras,
resulting in a total of 3,128 images at a resolution of
4032× 3024. Subsequently, we trained a team of engineers
to manually annotate the masks for each food waste instance
and assign a class name using the Labelbox platform. This
effort led to the annotation of 93 distinct classes, generating
29,433 instance annotations from the captured images.

Aligned with the study’s objective of identifying nutri-
tionally rich food waste contributing to high-quality com-
post with NPK values, the initial set of 93 classes underwent
refinement. Following guidelines from [19], the classes
were narrowed down to 15 nutrition-rich categories and 4
nutrition-light but high-performing classes. After excluding
images lacking annotations for the 19 selected classes, the
instance annotations were consolidated for each image to
create semantic segmentation masks. This process resulted
in a dataset comprising 2,912 images. Table I listed the final
19 distinct food waste classes, together with the associated
number of images and nutritional information for each class.
The majority of these food waste classes exhibit nutritional
richness or a balanced composition in terms of their NPK
values, as stipulated by [20], with some classes being
particularly rich in specific nitrogen (N), phosphorus (P),
or potassium (K) values. Please note that we also include 4
nutrition-light classes due to their prevalence in our kitchen
despite their lower nutritional content.

In comparison to other publicly available food datasets,
ours is the first to primarily focus on the challenge of se-
mantic segmentation within food waste classes post-meals.
In our study, we adopt 10-fold cross-validation during
the experiments. For this purpose, we shuffled the dataset
randomly and split all images into 10 roughly equal groups,
maintaining the class distribution if possible.

B. Models

In recent years, deep neural networks have garnered sig-
nificant success in semantic segmentation, greatly enhancing
our ability to comprehensively understand images. Architec-
tures like U-Net, PSPNet, and SegFormer have excelled in
various semantic segmentation tasks across diverse domains,
including health, agriculture, and autonomous vehicles [21]
[22] [23]. In this paper, we investigate the efficacy of
semantic segmentation in the specific context of identifying
and localizing food waste. To establish a benchmark for
our experiments, we employed the following four state-
of-the-art segmentation models: PSPNet [24], SETR [25],
Segmenter [26], and SegFormer [27].

PSPNet, introduced in [24], is a semantic segmentation
model characterized by its incorporation of a pyramid pool-
ing module. This module enables the capture of multiscale
information, enhancing segmentation accuracy by fostering
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TABLE I
TABLE DETAILING THE FOOD WASTE CLASSES PRESENT IN THE DATASET AND THEIR CORRESPONDING REPRESENTATION AS WELL AS

NUTRITIONAL INFORMATION.

Class # Images Nutrition Information Nitrogen, N (mg) Phosphorus, P (mg) Potassium, K (mg)
Banana Skin 485 Balanced 443.75 100 420

Egg Shell 581 Balanced 350 160 150
Lettuce Leaf 410 Nutrition-light 180 27 91
Hard Bread 261 Nutrition-rich 1970 212 250

Cooked Meat 201 Nutrition-rich 3260 280 476
Onion Skin 493 Balanced 431.25 300.36 161.20
Potato Skin 232 Nutrition-rich 3152 262.20 287.14
Apple Core 212 Nutrition-light 4.2 72 95

Orange 107 Nutrition-light 140 23 166
Waffle 43 Nutrition-rich, Nitrogen-rich 1510 254 217

Apple Peel 164 Nutrition-median, Potassium-rich 12.5 12 257.57
Corn Leaves 44 Nutrition-light 28 1.5 16.6
Cucumber 59 Nutrition-Median, Potassium-rich 13.06 24 147

Grape 98 Balanced 150 25 229
Orange Skin 629 Nutrition-median, Potassium-rich 93.75 21 212

Tea Bag 194 Nutrition-rich, Nitrogen-rich 4160 650 2000
Avocado Skin 196 Nutrition-rich, Nitrogen-rich 1100 141 459
Chicken Bone 161 Nutrition-rich, Phosphorus-rich 646.88 2040 40
Cooked Fish 58 Nutrition-rich, Nitrogen-rich 2610 205 372

context awareness. PSPNet has gained widespread popular-
ity as a segmentation network, demonstrating state-of-the-
art results across diverse computer vision applications. Its
success extends to domains such as autonomous vehicles,
medical image analysis, and other tasks requiring complex
scene understanding.

The Segmentation Transformer (SETR) [25], is a trail-
blazer in leveraging transformer architecture for segmenta-
tion tasks. This model seamlessly integrates convolutional
layers with transformer layers to extract features from
image patches. The initial convolutional layers focus on
capturing low-level features, while the transformer layers
adeptly handle high-level semantic information and context.
SETR adopts a hybrid architecture, demonstrating its ef-
ficacy through remarkable results in diverse segmentation
benchmarks.

Segmenter [26] is a recent transformer model designed for
semantic segmentation. Unlike SETR, this model is entirely
transformer-based and adopts an encoder-decoder architec-
ture. It maps a sequence of patch embeddings to pixel-level
class annotations. The transformer encoder processes the
sequence of patches, followed by decoding through either
a point-wise linear mapping or a mask transformer. No-
tably, the Segmenter model excels in capturing long-range
dependencies and contextual information within images,
showcasing its effectiveness in comprehending complex
scenes and accurately segmenting objects in images.

SegFormer [27] represents an extension of the trans-
former architecture tailored for computer vision applica-
tions. In SegFormer, a grid of image patches is treated
as a sequence of tokens, which undergo processing by
transformer layers. This model innovatively combines local
self-attention with global self-attention. Local self-attention
is applied within image patches to capture fine-grained de-
tails, while global self-attention captures long-range depen-
dencies across patches. To address the high computational
cost associated with self-attention in large images, Seg-
Former incorporates efficient attention mechanisms. These
mechanisms enable the model to focus on crucial image
regions, thereby reducing overall computational complexity.
SegFormer has showcased competitive performance across

TABLE II
RESULTS FROM SEMANTIC SEGMENTATION MODELS.

Method Backbone mIoU
PSPNet ResNet50-D8 57.91± 2.59

SegFormer MIT-B0 65.78± 3.22
SegFormer MIT-B5 67.08 ± 3.25
SETR naive ViT-L 40.45± 3.34

Segmenter mask ViT-B 16 45.16± 3.71

various computer vision benchmarks, owing to its efficiency
and accuracy, positioning it as a promising architecture for
a range of segmentation tasks.

C. Experiments

Pre-Processing: The initial images collected were of
dimensions 4032 × 3024. The dataset was partitioned ran-
domly into 10 approximately equal groups to facilitate 10-
fold cross-validation. Subsequently, all images were resized
to 1024×1024 and subjected to random cropping, retaining
75% of the image. Additionally, horizontal flipping was
applied randomly with a 50% probability, and photometric
distortion was introduced before the training process. To
address the substantial class imbalance within the dataset,
class weights were computed as outlined below.

Wclass i =
Total Pixels

Class i Pixels
(1)

Training Setup: The models were all implemented in
PyTorch in Python using the MMSegmentation framework
[28]. They were trained with 4 NVIDIA Tesla V100 GPUs
with 48G memory in total. We used SETR Naive with a
ViT-L backbone, Segmenter Mask with a ViT-B 16 back-
bone, and SegFormer with an MIT-B0 backbone.

Training Pipeline: For the PSPNet, Stochastic Gradient
Descent (SGD) was used with a learning rate of 0.01,
momentum of 0.9, and a weight decay of 0.0005. The model
was trained with a batch size of 2 for 80,000 iterations.
We adopt a polynomial learning rate decay schedule and
employ SGD as the optimizer for the SETR and Segmenter
models. We set the initial learning rate at 0.001. Momentum
and weight decay are set to 0.9 and 0 respectively for all
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TABLE III
CLASS-BASED RESULTS FROM THE SEMANTIC SEGMENTATION MODELS.

Models
Class PSPNet SegFormer SETR Segmenter

Banana Skin 70.51± 1.95 72.07± 0.41 48.31± 5.87 63.19± 3.68
Egg Shell 73.65± 2.05 74.99± 3.72 31.12± 2.45 58.65± 7.21

Lettuce Leaf 49.19± 9.58 57.89± 1.42 38.56± 4.93 39.33± 4.27
Hard Bread 69.51± 6.36 81.86± 3.98 55.56± 3.23 73.43± 2.38

Cooked Meat 56.61± 4.72 44.25± 7.93 38.46± 8.02 26.71± 5.36
Onion Skin 52.14± 5.55 57.32± 4.70 32.22± 3.17 39.16± 4.87
Potato Skin 33.63± 7.25 30.37± 8.34 30.89± 5.96 21.38± 10.02
Apple Core 58.93± 8.29 74.10± 4.70 32.83± 5.34 35.61± 11.14

Orange 51.01± 20.28 68.51± 4.48 63.34± 6.07 68.17± 1.35
Waffle 62.24± 24.38 88.31± 4.51 72.46± 20.35 22.34± 23.72

Apple Peel 40.82± 6.73 56.05± 10.91 20.07± 19.97 37.21± 8.11
Corn Leaves 68.17± 12.72 86.89± 2.61 44.58± 10.07 63.36± 8.05
Cucumber 65.64± 24.07 75.67± 5.31 63.58± 12.75 74.79± 2.47

Grape 64.41± 7.89 75.61± 7.67 65.72± 6.71 56.65± 5.24
Orange Skin 51.39± 4.38 56.23± 3.93 40.88± 3.84 50.96± 2.93

Tea Bag 56.19± 6.43 58.87± 6.62 23.07± 6.52 47.50± 7.84
Avocado Skin 49.16± 5.75 55.52± 2.85 28.27± 14.61 26.91± 9.13
Chicken Bone 56.13± 5.61 61.01± 3.21 42.51± 4.26 55.72± 5.94
Cooked Fish 40.83± 18.41 57.64± 2.03 49.21± 8.67 48.51± 1.67

the experiments on both the models. For the SegFormer
network, we trained the models using AdamW optimizer
and a batch size of 2 for 160K iterations. The learning rate
and weight decay were set to an initial value of 0.00006 and
0.01 respectively and then used a “poly” LR schedule with
factor 1.0 by default. To calculate the loss during training,
we utilized Cross-Entropy Loss. All other hyperparameters
were kept consistent with their default implementation.

Model Evaluation: To evaluate our models, we used
the intersection over union (IoU) metric, a foundational
evaluation metric used in detection and segmentation.

IoU =
Area of Overlap
Area of Union

(2)

IV. RESULT AND DISCUSSION

In our experiments, we implemented and compared four
state-of-the-art semantic segmentation models on the gen-
erated food waste dataset. We performed 10-fold cross-
validation to obtain statistically meaningful results. The
performance of the four models with different backbones is
shown in Table II. The results show the mean and standard
deviation of the mIoU for each model. It is evident that
SegFormer with an MIT-B5 backbone achieved the best
result with an mIoU of 67.08 ± 3.25. To further delineate
the segmentation results based on each specific food waste
class, we also provide the class-based segmentation results
in Table III. Out of the 19 food waste classes, egg shells and
banana skins were consistently the top performing classes
while potato skin, cooked fish, and apple peel were the
worst performing. Waffle, cucumber, and orange classes also
had the highest standard deviation, likely due to their low
training samples.

Fig. 2 presents a visualization of the qualitative results of
the four segmentation models. The figure illustrates the orig-
inal images and the disparities between semantic segmenta-
tion predictions and ground truths involving eggshells, onion
skin, and hard bread. All models demonstrate commendable
performance. We can see that SegFormer and PSPNet con-
sistently generate superior prediction masks characterized
by precise boundaries, effectively avoiding confusion with

visually similar objects in the images. In contrast, SETR
and Segmenter exhibit challenges in distinguishing between
backgrounds that share visual similarities with other classes,
resulting in less distinct segmentation

In the initial dataset, classes with high nutritional values
in NPK were retained, given their significant contribution to
the nutritional content of the resulting compost. However,
this selective inclusion led to a class imbalance in the
food waste dataset, impacting the model’s performance,
as evident in the class-wise results presented in Table
III. The close relationship between image count and class
performance is apparent, as reflected by the high standard
deviation for classes with a relatively lower number of
images in the dataset. The models tend to overfit the data
due to the lower training samples, resulting in reduced
generalizability. Based on our observations and the class-
specific results, an optimal number of images for consistent
and accurate results is estimated to fall within the range of
400 to 600 images per class.

The qualitative results indicate that classes with low stan-
dard deviation exhibit more consistent, accurate, and higher-
quality mask predictions. This observation is particularly
evident in classes such as eggshells, onion skin, hard bread,
and banana peels. Conversely, classes like oranges and
orange peels, as well as apple cores and apple peels, display
a substantial overlap in visual characteristics, presenting
a greater challenge in distinguishing one class from the
other. As a result, these classes exhibit higher difficulty
levels, leading to increased variability and less precise
segmentation outcomes.

V. CONCLUSION

Semantic segmentation is essential for predicting NPK
values from images. In this study, we utilized high-
resolution images of kitchen scraps and food waste, narrow-
ing down the initially diverse waste classes to 19 nutrition-
rich classes for experimentation. Based on the dataset, we
have benchmarked four state-of-the-art semantic segmen-
tation models by incorporating various data augmentation
techniques and leveraging pre-trained weights.
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Fig. 2. Visual results comparing the ground truths to their corresponding segmentation predictions are presented for cases involving egg shells, onion
skins, and hard bread across various segmentation models.

Our results highlight that transformer-based models, par-
ticularly SegFormer, exhibit superior accuracy. Additionally,
from qualitative assessments, PSPNet emerges as a strong
choice, generating high-quality masks for classes it can
effectively learn. PSPNet also demonstrates proficiency in
distinguishing the background class from foreground food
waste. The promising outcomes from our experiments pro-
vide a clear path for future work, wherein we aim to extrap-
olate NPK values for each food waste class based on their
detected masks. By expanding our dataset to include more
images for adequate representation of each class, we plan to
explore further enhancements in semantic segmentation to
achieve higher-quality masks for more accurate calculation
of NPK values across various food waste classes.
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