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Abstract—In orbital spaceflight today, there is high demand 

for servicing of satellites, assembling of space structures, as 

well as clearing of orbits from harmful debris. Orbital 

robotics is a critical technology for accomplishing these tasks. 

On-board autonomy of servicing spacecraft requires imaging 

or 3D sensors, LiDAR in the case considered here, and 

intelligent processing of their data to estimate the relative 

pose between servicer and target satellite. In this study we 

investigate a parametrization for pose regression based on 

Deep Learning (DL) that can be superior to the standard 

parameters. In particular, we show that higher prediction 

accuracy can be achieved by adapting the parametrization to 

symmetries or more generally pose ambiguities of the target 

object. This result is established in extensive experiments on 

both synthetic and real LiDAR data for several DL-based 

methods. Moreover, our own lightweight network is both 

more accurate and faster than classical methods, even on a 

standard Central Processing Unit (CPU), and more accurate 

than also the other recent DL-based methods we compare to. 

Our synthetically trained regressor also achieves excellent 

sim2real transfer.  

Keywords—pose estimation, deep learning, LiDAR data, 

satellite, orbital robotics 

I. INTRODUCTION

The development of on-orbit robotic technologies, such 

as for servicing satellites, removing debris, or assembling 

space structures, becomes increasingly important for the 

maintenance of orbital assets and for the sustainability of 

the orbital environment. Several missions successfully 

demonstrated on-orbit robotic capture of a cooperative 

target using a space manipulator system, such as JAXA’s 

ETS-VII [1, 2], DARPA’s Orbital Express [3], and China’s 

Aolong-1. Orbital ATK (Northrop Grumman) has 

developed the Mission Extension Vehicle (MEV-1 and 

MEV-2), which successfully completed docking 

operations with a client spacecraft [4]. There is a generally 

growing interest in the orbital robotics field, and indeed 

several mission studies are being carried out [5]. 

Spacecraft relative pose estimation is a crucial but still 

challenging capability for such missions. Early approaches 
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require the target’s cooperation and knowledge of the 

target’s characteristics. Today, however, autonomous 

navigation skills that work reliably also for uncooperative 

targets are becoming a critical component for enabling the 

objectives of upcoming orbital mission. These missions 

typically require a low latency for relative navigation and 

robotic operation, and thus can not rely on ground 

commands in these phases. Altogether they have higher 

demands on advanced on-board data processing. 

While cameras are still the most commonly used 

instruments for relative navigation, LiDAR sensors are an 

attractive alternative. In fact, they can reliably deliver 

range measurements and directly capture 3D target 

geometry, which is much more difficult to obtain with 

vision sensors. Moreover, LiDAR sensors are neither 

affected by the harsh orbital illumination conditions, nor 

by the presence of distant celestial bodies in their field of 

view, nor by the temperature of the target (as is the case 

for thermal cameras). On the downside, LiDARs are active 

sensors and hence typically have higher energy 

consumption than cameras. 

Autonomous navigation techniques based on LiDARs 

have been used in past missions for cooperative targets and 

recently also for uncooperative targets. In 2009 the STS-

128 mission demonstrated in orbit a TriDAR (triangulation 

+ LiDAR)-based rendezvous and docking with the ISS.

Experiments successfully included the automatic

acquisition of the ISS, a targetless tracking and the

demonstration of lighting immunity [6]. Another

prominent case is the operation of the Automated Transfer

Vehicle (ATV, 2008–2014), which employed as

navigation sensor a videometer, a system that operates

similar to a Flash LiDAR. At far distances, the sensor was

employed to measure the range, range-rate, and LoS.

Whereas at close distances, the relative position and

relative attitude were estimated utilizing retro-reflectors on

the ISS [7]. Of particular interest for the development of

improved navigation algorithms was the ATV-5

experiment in 2014, which allowed the collection of

synchronized data from visible, thermal cameras, and a

scanning LiDAR. However, such data are not publicly
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available. In 2021, the commercial MEV-2 mission 

performed rendezvous, proximity operations, and docking 

with an uncooperative target in geostationary orbit, 

carrying a sensor suite consisting of visual cameras, 

thermal cameras, and a LiDAR. At far range, the LiDAR 

was used to detect and track the target, while at close range 

it was employed to support 6D relative pose estimation. 

Mission outcome statements point out the value of having 

LiDAR on-board, which provides robust relative 

navigation capabilities and is immune to any effect of 

lighting and time of day [4, 8]. For future rendezvous and 

docking missions of the ORION module with the lunar 

GATEWAY, a LiDAR has been selected as the primary 

sensor to perform pose estimation [9]. 

One challenge for any method for on-board 6D pose 

estimation from image or LiDAR data is the real-time 

requirement in relative navigation and robotic operation. 

This has to be met under the constraints of limited on-

board computing resources, not comparable to state-of-

the-art on-ground devices. A method is thus needed that 

gives accurate predictions at low computational costs. 

Another challenge, particularly for LiDAR-based 

methods, is pose ambiguity in the typically sparse 3D point 

cloud, resulting from common geometric symmetries of 

satellites. These can be either exact or approximate, then 

broken only by minor structural elements that are not well 

captured in the LiDAR data. A method is thus needed that 

takes ambiguities into account in the predictions. 

Finally, a major problem in the development and 

validation of LiDAR-based pose estimation algorithms is 

the absence of public benchmark datasets, especially with 

real data and accurate ground truth. Hence validating a 

method, also demonstrating good sim2real transfer, 

requires an adequate laboratory facility for taking real 

measurements and a realistic simulation of the data from 

the used LiDAR. 

In this study we address all these challenges. 

Specifically, the main contributions are: 

• We propose a lightweight DL-based method for 

regressing the 6D pose of a known target satellite 

from LiDAR data. 

• We address the problem of pose ambiguities in 

the case of satellite targets with exact or 

approximate discrete rotational symmetries. We 

investigate and compare an adapted set of rotation 

parametrizations. They all ensure uniqueness and 

some additionally avoide discontinuities in the 

mapping from data (or its representation) to pose 

parameters, both being conditions for 

successfully training a neural network regressor. 

• We present an extensive study of the performance 

of DL-based pose regression with discrete 

(approximate) rotational symmetries for a range 

of different pose parametrizations on both 

synthetic data from a realistic LiDAR simulation 

and real LiDAR data from our OOS-SIM lab 

facility [10]. The results confirm that an adapted 

parametrization with uniqueness and global 

continuity consistently outperforms standard 

parametrizations with an adaptation just for 

uniqueness. 

• We make a comparison of our DL-based method 

to other recent DL-based methods as well as to 

classical methods for pose estimation. Our own 

lightweight network turns out to be both much 

more accurate and much faster than classical 

methods, even on a standard CPU, and more 

accurate than the other DL-based methods with 

similar runtimes. 

• We demonstrate excellent sim2real transfer of 

our synthetically trained regressor, comparing 

different data augmentations to minimize the 

sim2real gap. 

II. RELATED WORK 

In the space community, most of the research works for 

LiDAR-based pose estimation still rely on classical 

methods. The focus of such works is the initial pose 

acquisition, which is usually followed by some refinement 

steps via a local optimization method, typically the 

Iterative Closest Point (ICP). 

Some of these methods are based on the principle of 

geometric hashing. In Ref. [11], the Polygonal Aspect 

Hashing (PAH) method is introduced, which performs 

polygonal matching via a lookup hash table. Similarly, the 

Congruent Tetrahedron Align (CTA) method [12] 

constructs the tetrahedron occupying the largest volume in 

the point cloud convex hull and finds the congruent one 

from a hash table. 

Other methods don’t rely on a feature description. In 

Ref. [13] an offline database is first built containing point 

clouds of the target with different rotations; then, in the 

online phase, the most likely template matching candidate 

is retrieved using a correlation function. Similarly,  

Guo et al. [14] constructs a database of binary silhouette 

images obtained by projecting point clouds, and then finds 

the best correspondence using a similarity metric on binary 

images. 

Recently, some learning methods have been studied. In 

Ref. [15], a MultiLayer Perceptron (MLP) is used to 

process depth images and predict the cosines and sines of 

Euler angles, while a second MLP predicts the translation 

parameters based on the previously predicted rotation. 

However, a non-symmetric target is considered and only 

simulated data are employed to prove the method. 

Following a different idea, Zhang et al. [16] proposes an 

iterative procedure that first uses a Point Transformer 

block as embedding module to extract features from the 

source and target point clouds, and then uses a registration 

module relying on an attention mechanism to process the 

extracted features and derive correspondences and hence 

compute the relative transformation between the point 

clouds. These two steps are reiterated, transforming the 

source point cloud with the computed pose. The method is 

proven using only simulated uniform point clouds and for 

non-symmetric targets. In Ref. [17], the same authors 

propose an iterative Gaussian Mixture Model (GMM) 

method, where a neural network is used to learn point-to-

component correspondences. In Ref. [18], the output of a 
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stereo-LiDAR is voxelized and processed by 

convolutional and affine layers to regress the relative pose 

of an axisymmetric space debris. 

In contrast to these methods, we use PointNet layers to 

process directly the LiDAR point clouds, in a fashion 

similar to [19] but with deeper encoding, and we regress 

the 6D pose in a non-iterative way. Moreover, we also 

specifically address the problem of orientation ambiguities 

induced by exactly or approximately symmetric targets 

through proposing an adapted set of parametrizations for 

improved accuracy. 

III. PROBLEM STATEMENT AND OUTLINE 

Consider an object, in our case a satellite, that has an 

exact or approximate discrete symmetry of orientation, in 

the sense that the sensor used for data acquisition, in our 

case a LiDAR, does not allow to discriminate between a 

number of different orientations. The effect is an 

orientation ambiguity in the sensory data, even if some 

structural details of the object may actually break an exact 

symmetry but are not captured. In other words, using any 

standard rotation parametrization (e.g. Euler angles, 

quaternions, etc.), indistinguishable point clouds would be 

mapped to a set of non-unique orientation parameter 

values. 

However, regression of the object orientation 

necessarily requires unique parameter values for each data 

sample. In this situation there are two ways to make 

parameter values unique: 

• folding standard parameters from the full 

parameter space into a sector, effectively 

selecting a restricted range of parameter values 

that are by symmetry equivalent to all other 

parameter values; 

• expanding standard parameters from a sector to 

the full parameter space, effectively selecting a 

restricted range of orientations that are by 

symmetry equivalent to all other orientations. 

We call the former adaptation of standard parameters 

the folded parameters, the latter we call the expanded 

parameters. 

Specifically, if an object has an (approximate) n-fold 

symmetry around an axis, a folded parameter for 

orientation around that axis only covers a fraction of 1/n of 

a full rotation, as orientation can be uniquely predicted 

only in this range. An expanded parameter is “upscaled”1 

from that restricted section to the full parameter range, 

while still representing only the discriminated range of 

orientations. See Fig. 1 for an illustration.  

The folded parameters have an unavoidable 

discontinuity in their representation of orientation across 

the borders of the selected section, even when starting out 

from a parametrization that covers all orientations without 

discontinuities (such as quaternions), as is illustrated in 

Fig. 1. Discontinuities, however, are hard to follow 

accurately in learning-based regression, especially with a 

neural network which can naturally implement only 

continuous mappings. 

The expanded parameters, on the other hand, can be 

made continuous everywhere by choosing a smooth 

expansion of globally continuous standard parameters, 

also illustrated in Fig. 1. 

We verify in an extensive set of experiments with 

synthetic and real LiDAR data that DL-based pose 

regression indeed improves when using expanded 

parametrizations instead of various folded 

parametrizations. An allover best parameterization is also 

identified within our test set. 

We also propose a lightweight neural network 

architecture that is not only more accurate but also faster 

than tested classical methods on a standard CPU. This 

aspect is a critical factor in space missions where 

computing resources are severely limited in most cases. 

Moreover, the accuracy achieved by our network is 

superior also to the ones from recent DL-based methods 

that we compare to, while having similar run times. 

 

 

 

Fig. 1. Illustration in 2D of the effects of orientation ambiguity. Rotating square: approximate 4-fold symmetry (top row). For folded parametrizations 

a discontinuity problem occurs: body-fixed pointing vector with a restricted range (middle row). For an expanded version of the parameters the problem 

is eliminated: pointing vector with 4-fold rotation (bottom row). 

 
1 The parameter transformations needed for the expansion differ and are 

mostly nonlinear; it is usually not a rescaling in the literal sense. 
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Fig. 2. Illustration of our DL architecture, P2PReg. For a given point cloud 𝓟 we use an encoder based on two PointNet [20] blocks, in a fashion 

similar to [21]. The finally obtained encoding vector 𝒗 is regressed via a MLP to the parameters for rotation and translation. 

Note that continuous object symmetries are a different 

case where a degree of freedom entirely disappears, which 

is here not considered. 

IV. METHOD 

Given a 3D point cloud from a LiDAR, our goal is to 

estimate [𝑹|𝒕] ∈ SE(3), where 𝑹 is the rotation matrix and 

𝒕 the translation vector, representing the 6D object  

pose of a known rigid object, a satellite which is quasi-

symmetric in the cases considered here. 

To this end we train a neural network for the regression 

of a set of pose parameters. The pose parameters to be 

regressed include folded ones as well as expanded versions 

for the pose ambiguities of the target satellite. 

In this section we describe our network architecture and 

the pose parameters we compared for the regression task. 

A. Network Architecture 

As a pre-processing step, we have down-sampled the 

input point cloud with a voxel size of 0.03 m and 

subtracted its centroid from each point, followed by 

scaling to just fit into a unit sphere. 

Our method, P2PReg (for Point cloud to Pose 

Regression), is illustrated in Fig. 2. The architecture is 

composed of a lightweight encoder that stacks two 

PointNet layers [20], followed by a MLP for regression of 

pose parameters. Unlike in [19], we do not separate the 

translation and rotation regressions, as we observed to 

achieve a better performance with a joint MLP. 

The pre-processed point cloud 𝒫 =  {𝒑1, 𝒑2, . . . , 𝒑𝑚} 

is an unordered set of m points, and the encoder is invariant 

to all point permutations. For encoding, each point 𝒑𝑖  ∈
ℝ3  is individually processed via a shared two-layered 

MLP that outputs a feature 𝒇𝑖  ∈ ℝ𝑘  per point. This 

operation carried out for each point results in the matrix 

𝑭 ∈ ℝ𝑚 x 𝑘 (k = 1024) of the point features. Then the 

maxpool operator extracts a global feature 𝒈 ∈ ℝ𝑘 with 

components 𝑔𝑗 = 𝑚𝑎𝑥𝑖=1,…,𝑚(𝐹𝑖𝑗) and dimension 1024. 

The obtained global feature is then stacked on each point 

feature in 𝑭, which then is point-wise parsed via another 

shared two-layered MLP, obtaining other point features. 

The maxpool operator is then applied again, finally 

yielding the encoding vector 𝒗  of 𝒫 , which then is 

regressed to the pose parameters via a four-layer MLP. The 

encoding 𝒗 has dimension 1024. We use ReLu activation 

for all hidden layers. 

The encoding and the MLP on top are trained end-to-

end for the regression. We train with a loss function that is 

the sum of a translation and a rotation loss term: ℒ =

 ℒtrans +  ℒrot . These loss terms depend on the chosen 

parameters. 

B. Translation Parameters 

As commonly done, we don’t estimate directly the 

translation vector t, but we decompose the translation as 

follows: 

 𝒕 = 𝒄 + 𝛅                                (1) 

where c is the centroid of the input scan. The centroid c 

can be computed for a given point cloud, and our network 

regresses to the translation residual δ. The loss that we 

choose for the translation parameters is the Euclidean 

distance: ℒtrans  = ‖𝛅 − �̂�‖, where �̂� is the ground truth. 

C. Rotation Parameters 

We consider different parametrizations of the rotation, 

derived from standard parametrizations, which are adapted 

to the discrete (approximate) symmetry of the object: some 

folded and some expanded ones. 

1) Folded parameters 

Due to symmetry, or more generally ambiguity of 

orientation, the rotation parameter space can be split into 

several sectors that each represent the full range of 

appearances the target object can have in the LiDAR data; 

see Fig. 1. In order to cope with these orientation 

ambiguities, we need to transform the ground-truth and 

predicted orientation parameters such that they fall into 

only one of these sectors. The regressor is hence trained 

for the chosen sector only, but using point cloud data 

collected from the entire pose space. 

Considering an n-fold (approximate) rotational 

symmetry, the folding is realized by mapping all 

orientation parameter values around the symmetry axis to 

fall into a range that corresponds to rotation angles 𝛼 

between 0 and 2𝜋 𝑛⁄ , hence 𝛼 ↦ 𝛼 − 2𝜋 𝑛⁄  ⌊𝛼𝑛 2𝜋⁄ ⌋ . 

This folding transformation is not explicitly indicated in 

the parametrizations defined below, which hence appear 

like the corresponding standard parametrizations. 

Folded Euler angles: We consider the Euler angles 

𝒆 =  [α, β, γ], which are respectively the roll, yaw, and 

pitch angles, where α is the rotation angle around the 

symmetry axis. The rotation matrix is computed as: 

 𝑹 =  𝑹𝑦(γ) 𝑹𝑧(β) 𝑹𝑥(α) . (2) 

Such a representation has a discontinuity when an angle 

has value 0 or 2π. However, as we reduce the parameter 

space to one symmetric sector only, this discontinuity for 
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α is eliminated, while another one is introduced at the 

borders of the sector; see Fig. 1. Another issue of this 

representation is the Gimbal lock, which occurs when two 

rotation axes align, yielding the same rotation for a range 

of parameters. We choose as rotation loss ℒrot  =
 MSE(𝒆, �̂� ) , where MSE(·) , denotes the mean-squared 

error and �̂� is the ground truth. 

Folded quaternions: Unit quaternions ( 𝒒 ∈ ℝ4,
‖𝒒‖  =  1)  can also be employed to represent 3D 

orientations. Rotations vary smoothly and without 

discontinuity over the ℝ4  unit sphere, and there is no 

singularity like the Gimbal lock issue. However, two 

separate quaternions represent the same orientation. We 

choose as rotation loss ℒrot  =  MSE(𝒒, �̂� ), where �̂� is the 

ground truth. 

Folded axis-angle: In the axis-angle representation, a 

vector 𝒘 ∈ ℝ3 represents a rotation of θ =  ‖𝒘‖ radians 

around the unit vector 𝑁(𝒘) , where 𝑁(·)  is the 

normalization function. Given an axis-angle representation, 

the corresponding rotation matrix 𝑹  is obtained via the 

Rodrigues formula as: 

 𝑹 =  exp(𝒘×)  =  𝑰 + 
sin(θ)

θ
𝒘×  +  

1 − cos(θ)

θ2 𝒘×
2 , (3) 

where 𝒘×is the skew-symmetric matrix form of 𝒘. As loss 

we choose the angle of the difference rotation: ℒrot  =
 arccos(Tr(�̂�𝑹−1 − 1)/2), where �̂� is the ground truth. 

Folded pointing vectors: The pointing vectors 

parametrization, studied in [22], is a 6D continuous 

representation without singularities on SO(3). It consists 

of a pair of 3D vectors 𝒓 =  [𝒓1, 𝒓2], which correspond to 

the first two columns of the rotation matrix. Via the inverse 

mapping the rotation matrix can be retrieved column-wise, 

𝑹 =  [𝑹1|𝑹2|𝑹3]:   

 

𝑹1 = 𝑁(𝒓1)      
𝑹2 = 𝑁(𝒓2  − (𝑹1 ·  𝒓2) 𝑹1) ,      (4) 

𝑹3 = 𝑹1 × 𝑹2 
   

where 𝑁(·) is the normalization function. We choose as 

loss the Euclidean difference ℒrot =  ‖𝒓  − �̂�‖, where �̂� 

is the ground truth. This loss proved to be better than the 

angle of the difference rotation. 

2) Expanded parameters 

All of the above rotation parametrizations cause a 

discontinuity to the regression problem at the borders of 

the chosen section of the parameter space, see Fig. 1. We 

investigate an expansion of two of the parametrizations 

above in order to eliminate these symmetry-induced 

discontinuities by covering the full parameter space, thus 

removing the section borders. Again, we consider the case 

of an object with n-fold rotational symmetry, or more 

generally rotation ambiguity. 

Expanded Euler angles: Choosing the roll axis as the 

symmetry axis, we define the expanded Euler angles 

 𝒆ex  =  [𝑒1, 𝑒2, 𝑒3, 𝑒4]  ∈ ℝ4 as: 

  

𝑒1 = sin(𝑛α) 
𝑒2 = cos(𝑛α)                                  (5) 

𝑒3 = β             
𝑒4 = γ 

  

With this mapping, we achieve the same representation 

in the parameters space for equal ambiguous input point 

clouds. Moreover, by going from the roll angle α to its sine 

and cosine we eliminate the discontinuity at α =  0 or 2π; 

cf. Fig. 1. The rotation matrix is: 

 𝑹 =  𝑹𝑦(𝑒4) 𝑹𝑧 (𝑒3) 𝑹𝑥  (
arctan(𝑒1/𝑒2)

𝑛
) . (6) 

As loss we choose ℒrot  =  MSE(𝒆ex, �̂�ex), where �̂�ex is the 

ground truth. 

Expanded pointing vectors: The expanded pointing 

vectors 𝒓ex  are defined as the first two columns of the 

expanded rotation matrix 𝑹ex  =  𝑹𝑦(γ) 𝑹𝑧(β) 𝑹𝑥(𝑛α) . 

The inverse mapping can be achieved in two steps: first 

retrieving 𝑹ex  using equation (4), then computing the 

expanded Euler angles (5), then unfolding the rotation 

passing through the mapping in equation (6). We choose 

the same loss as for the folded pointing vectors, the 

Euclidean difference ℒrot =  ‖𝒓ex   −  �̂�ex‖ , where �̂�ex  is 

the ground truth. 

The same idea was proposed in [23], however, not using 

LiDAR data, and no experiments were carried with 

discrete rotational symmetry of objects. 

V. EXPERIMENTS 

In this section, we describe our experimental setup used 

for training and testing the different methods. We then 

investigate the effects of different parametrizations of pose 

on the regression performance. Next our P2PReg network 

with the best performing parametrization is compared to 

two recent alternative DL-based methods, both with their 

original and with our best parametrization. In this 

comparison we also include some classical methods of 

pose estimation. Finally, we show the dependence of 

sim2real performance on different ways of augmenting the 

training data. 

A. Experimental Setup 

1) Scenarios 

For the purpose of training and testing our methods we 

have generated synthetic datasets for two different 

satellites, examples shown in Figs. 3(a) and (c): the OOS-

SIM client satellite (sat1) and the Clementine satellite 

(sat2). Moreover, we have acquired real data for sat1, 

an example shown in Fig. 3(b). 
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Fig. 3. Illustration of the scenarios under study. We deal with partial, non-uniform point clouds affected by artifacts. (a) sat1: synthetic data; (b) 

sat1: real data; (c) sat2: synthetic data. 

The OOS-SIM [10] is our lab facility for realistic 

simulation of on-orbit servicing scenarios. The facility is 

equipped with two satellites mock-ups, a servicer and a 

client (sat1). The servicer carries a lightweight robot arm 

with gripper to perform servicing tasks such as capturing 

of the client satellite. Two large industrial robots hold the 

satellite mock-ups, simulate their weightlessness and 

relative motion. In order to perform proximity operations 

with the client, the servicer is equipped with a stereo 

camera attached to the gripper of the robot and a LiDAR 

system consisting of two scanning LiDARs mounted on a 

boom attached to the servicer. The two LiDARs are VLP-

16 by Velodyne™, rotated by 90° with respect to each 

other. This LiDAR system is simulated for synthetic data 

generation as well as used for real data acquisition; see 

section V.A.2) for details. 

Clementine (sat2) was a NASA LEO satellite devoted 

to scientific observations and technology demonstrations, 

whose CAD model we took from [24]. 

These two satellites have been chosen because of the 

availability of CAD models, the availability of real data 

from our lab (sat1), and the quasi-symmetric geometry 

of the satellites. In particular, sat1 has a 6-fold symmetry, 

broken by small details, like three handles and a grasping 

point; while sat2 has a 2-fold symmetry dominated by 

the large solar panels, broken by a small appendage on the 

bottom. Of course, our method can generally work also for 

other (approximately) symmetric object shapes not 

considered in this study. 

2) Dataset 

The synthetic dataset for sat1 contains 500k sample, 

with random uniform positions in the range 0.5 m to 2 m. 

The dataset for sat2 contains 400k sample (i.e. fewer due 

to memory limitations during training), with random 

uniform positions in the range 2 m to 4 m. In both cases, 

rotations have been drawn randomly and uniformly by 

sampling quaternions. We split each dataset in training set 

(60%), validation set (20%), and testing set (20%). 

The sensor that we simulate is the OOS-SIM dual-

LiDAR system (VLP-16). Our data simulator includes 

anisotropic noise in the lasers’ firing direction and beam 

divergence. The latter is obtained by aggregating for each 

laser several rays, slightly diverging from the nominal line 

of sight direction, and taking the average of their depth 

values. No reflections and motion blur effects are included 

in the simulator. 

Moreover, in order to prove the methods against the 

sim2real gap, we have collected a dataset at the OOS-SIM 

facility in our lab for the sat1 scenario, which consists of 

190 sampled relative poses taken along 6 different 

trajectories. We refined the ground truth of the data by 

applying ICP using the satellite CAD model. As visible in 

Fig. 3(b), the experimental data contain several artifacts, 

such as noise in the firing direction, beam divergence, and 

reflections on the MLI highly reflective surface which 

covers the satellite’s front panel. Comparing to Fig. 3(a), 

it can be qualitatively seen that a lot of these artifacts are 

reproduced in the simulated data. 

3) Training 

The model is trained on the synthetic data for 300 

epochs with a batch size of 32, using the Adam optimizer 

with a learning rate of 1e-4 and a weight decay of 1e-6. 

4) Evaluation metrics 

For evaluation of our experimental results we use 

different error metrics. Since the methods under study 

cannot resolve the pose ambiguities, the relevant pose 

errors are the minimum ones achieved across all 

(approximately) symmetric variants of a predicted pose. 

Let 𝑻 =  [𝑹|𝒕] be the predicted pose, 𝒮𝑻 the set of poses 

which are equivalent by symmetry, and �̂�  =  [�̂�|�̂�] be the 

ground-truth pose. 

The minimum Average Distance of model points for 

Distinguishable (minADD) and for Indistinguishable 

(minADI) points, given a complete uniform point cloud ℳ 

of the satellite model, are defined as:  

 

minADD = min
𝑻′∈𝒮𝑻

 avg
𝒑∈ℳ

 ‖�̂�𝒑 − 𝑻′𝒑‖ ,                       

          minADI = min
𝑻′∈𝒮𝑻

 avg
𝒑1∈ℳ

 min
𝒑2∈ℳ

 ‖�̂�𝒑1 − 𝑻′𝒑2‖ .       (7) 

 

The translational and rotational errors are defined as: 

𝑒trans = ‖𝒕 − �̂�‖, 𝑒rot =  arcos(Tr(�̂�𝑹−𝟏 − 1)/2)  (8)
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Fig. 4. Results of the comparison of the different pose parametrizations. Methods with expanded parameters clearly outperform the methods with 

corresponding folded parameters. The method with expanded pointing vectors as parameters has the allover best performance on both synthetic and real 

data, and on both targets. a) minADD for sat1 on synthetic data; (b) minADI for sat1 on synthetic data; (c) minADD for sat1 on real data; (d) 

minADI for sat1 on real data; (e) minADD for sat2 on synthetic data; (f) minADI for sat2 on synthetic data. 
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Fig. 5. Comparison between DL-based and classical methods in terms of accuracy and speed. Clearly P2PReg (our method) presents the best 

accuracy on both synthetic and real data, and for both targets. 

Note that minADD and minADI are related to the ADD 

and ADI metrics that are respectively meant to penalize or 

tolerate pose variations due to (approximate) 

symmetries [25]. 

B. Comparison of Pose Parametrizations  

The comparison of the different rotation 

parametrizations defined in Section IV.C is shown in 

Fig. 4. A local optimization for pose refinement (like ICP) 

can further improve the accuracies, but is not included here. 

In general, the global pose estimate evaluated here can 

serve as the initialization of an optional refinement method, 

and better initialization gives higher chance and speed of 

convergence.  

The plots in Fig. 4 show the percentage of testing 

samples within the minADD/minADI thresholds, where 

such thresholds are a given as a fraction of the object 

diameter. The larger the area under the curve, the better the 

performance. As clearly visible in Fig. 4, the 

parametrizations with expanded pointing vectors and 

expanded Euler angles yield a superior performance 

compared to their folded versions. The beneficial effect of 

expanding parameters is verified for both of the target 

satellites (hence for different symmetries), and on both 

synthetic and real data (the latter only for sat1). This 

confirms the rationale we give in section III for choosing 

the expanded parameters for regression. 

It can be noticed that the minADI is generally lower 

than the minADD. This is due to the fact that the minADI 

metric is less strict, since it considers the distance between 

nearest-neighbor points, not strictly corresponding points 

as minADD does. 

Among the parametrizations studied, the best results are 

achieved with expanded pointing vectors, being superior 

to the other ones in all the test cases: it achieves a minADD 

below 0.05d, i.e., less than 5% of the object diameter, for 

92% of the test samples in the sat1 case with synthetic 

data and for 93% with real data, and for 96% in the sat2 

case with synthetic data. 

C. Comparison to Classical Methods and Other DL-

Based Methods  

The space community still considers classical methods 

as the baseline for on-board algorithms. Only in recent 

years, learning methods are being considered, especially 

for image processing, and mostly at research level. We 

compare P2PReg (our DL-based method) using expanded 

pointing vectors as parameters with two different classical 

methods, in terms of both accuracy and speed. 

The first classical method is the RANSAC algorithm as 

implemented in Open3D [26], which finds corresponding 

points between the source and the target point clouds by 

querying the nearest neighbors in the FPFH space [27]. In 

the case of sat1, the performance is further improved by 

checking the inlier count for known frequent cases of large 

misalignment and retaining the best scoring transformation. 

Such improvement is not implemented for sat2, as the 

number of occurring large-error cases is very high and 

would require a highly engineered solution. 

The second classical method consists of encoding the 

input point cloud using the Basis Point Set (BPS) [28], 

which is an efficient non-learning method for the global 

representation of a point cloud. The training set (that was 

used for the DL-based methods) is still exploited for 

constructing a codebook of such global features. During 

inference, the given point cloud is transformed to the BPS 

encoding, and the nearest neighbor in the codebook is 

found, looking up the corresponding pose. 

We also compare to two other DL-based methods that 

were proposed for satellite pose estimation. The first is 

BaseNet from [19]: two networks for separate regression 

of orientation and translation, using axis-angle parameters 

for orientation. The second method, P2A2TReg (for Point 

cloud to Attitude to Translation Regression, our 

terminology), is inspired by [15]: a first network predicts 

the orientation, a second predicts the translation from it 

(based on an implicit dependence of the offset of the data 

centroid from the model centroid on the viewpoint). While 

the original version uses depth images as input, we found 

Journal of Image and Graphics, Vol. 13, No. 2, 2025

171



that turning our sparse LiDAR data into that format gives 

unsatisfactory results. We therefore have used our network 

for the orientation prediction, and the translation network 

from [15] for the translation prediction. Their original 

orientation parameters are the sine and cosine of the Euler 

angles. We implemented two versions for each of these 

DL-based methods, one with folded versions of their 

original orientation parameters, the other with the 

expanded pointing vectors, the best from our study. 

The computational time for DL-based and classical 

methods is evaluated on a standard CPU, an Intel(R) 

Xeon(R) CPU E5-1630 v4 @ 3.70GHz. 

In Fig. 5, the average minADD and computational time 

on the testing set are shown for each method. It can be seen 

that our P2PReg outperforms in accuracy the other DL-

based methods, with just small differences in 

computational time. Moreover, the expanded pointing 

vectors as parameters improve the other DL-based method. 

It can be noticed that P2A2TReg has a poor performance 

compared to the other DL-based methods; it turns out that 

the translation offset does not depend uniquely on the 

target orientation, as the centroid of the LiDAR point 

clouds is different for different translations. 

Our P2PReg outperforms the classical methods in both 

accuracy and computational time by a large margin. The 

RANSAC method is the one with poorest accuracy, 

especially in the sat2 case. Regarding the BPS method, 

we noticed that the costliest step in terms of computational 

time is the nearest-neighbor search in the codebook. 

D. Augmentations for sim2real 

The sim2real domain gap is a key challenge for pose 

estimation especially in space applications, due to the lack 

of real data from orbit (or also planets) with accurate 

ground truth and to the stringent qualification 

requirements for space algorithms. From Figs. 4 and 5 it is 

evident that P2PReg transfers very successfully from 

synthetic training to real test data from the lab: the 

accuracy on synthetic and real test data is quite similar. 

In Table I we present for P2PReg with expanded 

pointing vectors as parameters the effect of training on 

synthetic data with increasingly aggressive augmentations 

on real-data performance. 

TABLE I. TEST RESULTS ON REAL DATA FOR DIFFERENT 

AUGMENTATIONS OF SYNTHETIC TRAINING DATA (BEST IN BOLD) 

Augmentation minADD minADI 𝒆trans [cm] 𝒆rot [deg] 

no aug 0.0570 0.0276 5.44 3.95 
aug1 0.0599 0.0268 5.00 5.12 
aug2 0.0379 0.0191 3.34 3.08 
aug3 0.0394 0.0200 3.55 3.13 

 

More specifically, no aug is training without data 

augmentations, aug1 includes noise in the laser firing 

direction with varying intensity, aug2 adds also outlier 

points, aug3 adds deformations (e.g., shearing, tapering, 

and torsion on random axes). aug2 achieves the best 

performance for all the metrics, considerably increasing 

the accuracy with respect to no aug. We can also observe 

that the severity of the applied augmentations should be 

limited, especially as we want to stay with a lightweight 

network due to the constrained computational resources on 

space hardware. All results in sections V.B and V.C were 

obtained using augmentation aug2. 

Note that the effect of beam divergence is included in 

all the versions of the training data, i.e., not only as part of 

the augmentations. We have found that including beam 

divergence into the data simulation (see Section V.A.2) 

generally has a strong positive effect on real data 

performance. 

VI. CONCLUSION 

In this work, we presented a DL-based method to 

estimate the 6D pose of an exactly or approximately 

symmetric target satellite from LiDAR data. We handled 

the problem of the resulting orientation ambiguities by 

proposing expanded parametrizations of rotation and 

showed that they outperform their folded versions of 

standard parametrizations. Moreover, we have identified 

an allover best parametrization that yields the highest 

accuracy on all of our test cases. 

Our lightweight deep network for directly processing 

LiDAR point clouds is both more accurate and faster than 

classical methods, even on a standard CPU, and more 

accurate also than other recent DL-based methods we 

compare to. 

We also demonstrated that our synthetically trained 

method successfully overcomes the sim2real gap, using 

realistic data collected in our OOS-SIM facility. 

Clearly, the superior performance of the expanded 

rotation parametrization in cases of orientation ambiguities 

can be expected to hold more generally for pose regression 

problems from other application domains, and when using 

other sensory data such as depth or RGB camera images. 

The current study is limited to the evaluation of the 

methods on standard CPUs. Future work should include 

evaluation on space relevant hardware as well as validation 

and verification strategies to qualify DL-based methods for 

space applications. 
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