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Abstract—Oil pipeline monitoring using Unmanned Airborne 

Vehicles (UAV) can be done by utilizing Deep Learning. Deep 

Learning can be used to automatically detect harmed or 

unauthorized objects near the pipeline for further action by 

the authority. Input video in the pipeline area taken from the 

UAV has unique characteristics. It has low resolution with 

dense composition object in the image. The detected object 

also has a small scale as the objects are far away from the 

UAV. Thus, the selection of the Deep Learning algorithm is 

important to get a desirable result with the following 

conditions. Single Shot Multi-Box (SSD) is one of the popular 

Deep Learning algorithms with fast calculation compared to 

others and suitable for real-time object detection.  Previous 

works on this topic using low to medium altitude dataset (20–

200 m). This paper provides an evaluation of SSD 

implementation to detect vehicles on high-altitude dataset 

(300 m). As much as 2482 dataset is fed into SSD architecture 

and trained to detect 3 class of vehicles. The result shows the 

mAP and mAR are 0.026360 and 0.067377, respectively. 

However, the low lost function value shows that the model is 

able to classify the object correctly. In conclusion, the SSD 

cannot process low density information to correctly locate the 

object. 

Keywords—oil pipeline monitoring, Unmanned Airborne 

Vehicles (UAV), deep learning, object detection, Single Shot 

Multi-Box (SSD) architecture 

I. INTRODUCTION

The transportation of midstream products in oil and gas 

company through land mostly uses pipelines because it is 

more convenient compared to shipping by railroad and 

highway. These big pipelines normally pass through public 

space [1], and consequently are highly vulnerable to risks 

that lead to equipment failure or loss, yielding to 

transmission disruption. Equipment failure or loss can be 

caused by various reasons including natural disaster, over-

age structure or even third-party interference [2]. Loss by 

third party interference can be accidental or even worse, 

intentional, causing huge loss of oil products. These risks 

can potentially happen not only in several points but can 

be spread along the entire length of the pipeline which is 
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thousands of kilometers extends from reachable and 

unreachable areas. Therefore, it is necessary to monitor 

and undertake surveillance of the pipeline and surrounding 

condition regularly for any possible security incident such 

as oil-theft. 

Conventional pipeline inspection is commonly 

performed by the pipeline operator through Line Walk (on 

foot), survey, or by air (using helicopter). Security patrols 

and camera installation on several points of the pipeline 

are also added for the video surveillance monitoring 

process. Hence, the surveys and surveillance methods can 

be exhaustive, slow, costly and time consuming [3]. There 

are several studies that propose another method for 

pipeline monitoring to overcome the lack of conventional 

method by utilizing Internet of Things [4–7] or the usage 

of Unmanned Airborne Vehicles (UAV) [8–12]. 

Monitoring pipeline by IoT (Internet of Things) mostly 

utilizes sensor and camera that installed around the 

pipeline, thus, do not present the complete picture of the 

pipeline while monitoring by UAV can cover all condition 

with several advantages [3]. 

Oil pipeline monitoring by using UAV can be done by 

utilizing Deep Learning. Deep Learning can be used to 

automatically detect harmed or unauthorized objects near 

the pipeline for further action by the authority. Input video 

in the pipeline area taken from the UAV also has unique 

characteristics. It has low resolution image with dense 

object composition. The object also has a small scale 

because the video is taken from the UAV camera, while 

the UAV usually flies quite far from the ground. The 

selection of the Deep Learning algorithm is important to 

get a good result. Deep learning approach for object 

detection in aerial scenes captured by drones has been 

widely studied with specific challenge based on its 

application [13, 14]. 

However, all previous research on this subject is 

conducted on low to medium height (20–200 m). The 

works of Meng et al. [11] is conducted using dataset 

collected at the height of 100–200 m. While the actual 

implementation of pipeline surveillance could be 

conducted at high-altitude (around 300 m and above). The 
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difference in altitude and its effect on the quality of object 

detection needs to be investigated further.  

 This work evaluates the accuracy of existing object 

detection model on high-altitude. This works uses case 

study on detecting the physical presence and tampering 

possibility at pipeline as one of the critical challenges in 

the distribution sector of the oil and gas company [15]. A 

video stream from a high-altitude UAV equipped with 

camera is obtained as the input with a low-resolution 

image and small yet dense objects are being captured. This 

works uses Single Shot Multi-Box (SSD) algorithm, since 

it is a lightweight object detection algorithm that suited for 

real-time detection in the operation site.  

Based on that purpose, this work provides an evaluation 

of high-altitude object detection as its novelty, different on 

the previous work’s medium-altitude object detection. 

Accuracy and loss metric is used to evaluate the result of 

object detection using the selected algorithm. 

This rest of paper is divided into the following sections: 

Section II provides the related works for this research. 

Section III discusses the method used in this research. 

Section IV shows the evaluation result and discussion. The 

conclusion is given in Section V. 

II. LITERATURE REVIEW 

A specific application of object detection for pipeline 

monitoring using UAV also has its own challenge caused 

by the native of the environment, the object that wants to 

be detected and the type of UAV used to capture the video 

stream and the resolution of the image itself [16]. There 

are several studies that have been conducted for UAV 

based object detection, especially for pipeline monitoring. 

Ammour et al. [17] uses Deep Convolutional Neural 

Network (CNN) and Support Vector Machine (SVM) to 

detect cars from the medium-altitude UAV with a wide 

range application. Ammour et al. uses images taken from 

high resolution cameras mounted on the UAV.  

Jiao et al. [10] focus on detecting the oil spill while 

monitoring the pipeline using UAV. Deep CNN and Otsu 

algorithm are being used for the detection algorithm. 

Ukaegbu et al. [18] uses CNN to detect pipeline leakage 

and non-authorized employer or people without PPE. The 

paper focuses on the UAV system while the architecture of 

the Deep Learning (DL) is not deeply explained.  

Gleason et al. [12] use classic Machine Learning (ML) 

classification algorithms to detect vehicles near the 

pipeline to replace the current pipeline patrol. Four 

different algorithms are being compared to get the best 

result. The area coverage includes vegetation, rural roads, 

buildings, lakes, and rivers. The high-altitude UAV are 

being used to take the surveillance and a wide range of 

vehicles being detected from excavators to a private car. 

The accuracy within 85% vehicle detection rate. Meng et 

al. [11] already use Deep learning one stage object detector 

YOLOv3 to detect threat vehicles near the pipeline. A 

medium altitude UAV with 100–200 m height range is 

being used and the threat vehicle specified to excavator. 

The model is tested on the China’s oil pipeline with 

maximum 99.4% recall rate. 

In this paper, a video around pipeline in rural area, 

Indonesia is gathered using a high altitude UAV with a 

constant height of 300 m is used as an input. The video has 

a low resolution to detect three main unauthorized vehicles: 

car, truck, and motorcycle. Because the height of the UAV 

is constant, the size of the bounding box for each class 

tends to remain unchanged while each class has a different 

size of the bounding box. Therefore, Single Shot Multi-

Box (SSD) neural network is a suitable solution for the 

condition. SSD is one of the latest deep learning methods 

and is known to be the simultaneous detection of objects 

with various sizes [19]. Compared to other algorithms, 

SSD has claimed with better performance while using 

lower resolution images [20]. SSD is also designed for 

object detection in real-time. SSD speeds up the process 

by eliminating the need for the region proposal network, 

thus it has fast processing compared to others. 

III. MATERIALS AND METHODS 

Deep learning-based monitoring for the oil pipeline 

tampering is done by using deep learning method. Thus, 

the research is conducted based on deep learning process, 

which consists of data preparation, training/modeling, and 

testing shown in Fig. 1. The data collected from the UAV 

is preprocessed during the data preparation phase for the 

next step. In the training process, the training data is used 

to get the predictive model based on the selected deep 

learning algorithm. During the testing phase, the result 

from the training phase is used on the testing data to 

determine the algorithm’s performance. The details of 

each phase are explained in the next step. 

 

 

Figure 1. The research method. 

A. Data Preparation Phase 

Several videos from an UAV (quadcopter type UAV) 

with 300 m altitude (high altitude) are taken along the oil 

pipeline on the rural area in Indonesia as the raw data for 

the training and testing phase. The environment of the area 

near pipeline are buildings, common road, rural road and 

Journal of Image and Graphics, Vol. 11, No. 4, December 2023

385



vegetations. The dataset consists of 2482 images acquired 

by taking the video frames from the raw videos. This 

custom dataset is configured by using COCO 

configuration. Example of the dataset can be seen in Fig. 2. 

Object labelling is conducted for each image in the dataset. 

The labels are “mobil” (car), “motor” (motorcycle) and 

“truk” (truck). These three objects are identified as 

potential unauthorized objects near the pipeline that have 

the possibility to tamper the pipeline with the high impact. 

The Region of Interest (ROI) is also determined to each 

image as the detected object only valid as the potential 

unauthorized vehicle if the existence of the object is in the 

area near the pipeline. The dataset is then divided into 65% 

for training, 15% for validation and 20% for testing. The 

ratio between each class label of the dataset can be seen in 

Fig. 3. The Imbalance Ratio (IR) is 3 and categorized as 

moderate data imbalance [21]. 

 

 

Figure 2. The example of the dataset. 

 

Figure 3. Class label composition. 

B. Training and Evaluation Phase 

The training dataset has a unique characteristic because 

the desired detected object comes from aerial images 

which make the object become small and dense. Single 

Shot Multi-Box Detector (SSD) is chosen as the deep 

learning algorithm for vehicle detection with the 

consideration mentioned in Section II. The SSD for real 

time object detection has two components, namely 

backbone and head SSD [20]. The backbone model is the 

pre-trained image classification network as a feature 

extractor. In this research, MobileNet V2 [22] is used for 

the feature extractor while the original SSD using VGG-

16 feature extractor [23]. The backbone result is 320×320 

feature maps. The SSD head is the convolutional layer 

added at the end of the backbone for object detection. The 

architecture can be seen in Fig. 4 [24]. 

For the training stage, the batch size and epoch used in 

this research are 24 and 50,000 respectively as the 

validation result shows the following configuration gives 

the highest accuracy value. The result of the training phase 

is the predictive model for the testing phase. During the 

evaluation phase, loss and precision information are 

gained for analysis purposes. 

C. Testing Phase 

During the testing phase, another video from the high 

altitude UAV near the pipeline in rural area is taken and an 

inference process is done to the tested video. A predictive 

model gained from the training phase is used to identify 

the unauthorized vehicles near the pipeline. If the presence 

of the potential object is detected, a bounding box is 

formed around the object along the pipeline for further 

checking by the authority. In this phase, the prediction 

result of the undesired vehicles (car, motorcycle, or truck) 

near the pipeline is also obtained. 

D. Metric Performance  

In measuring the object detection model performance, 

mean Average Precision (mAP) and mean Average Recall 

(mAR) can be used. The mAP and mAR are calculated by 

finding the Average Precision for each class and then 

averaging it for all class in the dataset, following Eqs. (1) 

and (2), respectively [25].  

 𝑚𝐴𝑃 =
∑ 𝐴𝑃𝑖

𝑘
𝑖=1

𝑘
 (1) 

 𝑚𝐴𝑅 =
∑ 𝐴𝑅𝑖

𝑘
𝑖=1

𝑘
 (2) 

The Average Recall is calculated by averaging recall 

value over all Intersection of Union 𝐼𝑜𝑈 ∈ [0.5 , 1.0] and 

can be computed as two times the area under the recall-IoU 

curve Eq. (3) [1]. 

 𝐴𝑅 = 2 ∫ 𝑟𝑒𝑐𝑎𝑙𝑙(𝑜)
1

0.5
𝑑𝑜 (3) 

The Average Precision calculation is similar to Average 

Recall. It calculates the average precision value for all 

Intersection of Union Eq. (4) [1]. 

 𝐴𝑃 = ∫ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑟)
1

0
𝑑𝑟 (3) 
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Figure 4. SSD-MobileNetV2 Architecture with 300×300 resolution input image. 

IV. RESULT AND DISCUSSION 

During the inference process, the example output of the 

video frames from high altitude UAV can be seen in Fig. 5. 

The pipeline is located on the right side of the road. An 

object identified as truck and motorcycle on the road near 

the pipeline is captured with low probability, while the 

truck outside the ROI is not identified.  

Evaluation of the model performance is conducted using 

accuracy and loss metrices. Recall and precision are 

calculated for accuracy. Localization, classification, 

generalization, and total loss are presented as the loss 

metrices. 

 

 
 

 

Figure 5. The inference result on the testing video frames. 

A. Object Detection Performance 

The evaluation metric at step 50,000 can be seen in 

Table I. The figure contains the whole performance for 

each IoU (Intersection of Union) threshold. Based on the 

result, the mAP is 0.026360 and the mAR is 0.067377. 

 

 

TABLE I. PERFORMANCE AT 5000 EPOCH 

Average Recall Average Precision 

ARmax=1 0.067 APIoU 0.026 

ARmax=10 0.106 APIoU=.50 0.065 

ARmax=100 0.118 APIoU=.75 0.018 

ARsmall 0.103 APsmall 0.019 

ARmedium 0.101 APmedium 0.028 

ARlarge −1.000 APlarge −1.000 

 

It is stated that the value of mAP and mAR are small, 

around 2% and 6%. It is also similar with other IoU 

threshold, the value of mAP and mAR is less than 10%. 

This also means that the precision and recall for all IoU 

thresholds are also low. The low precision means that the 

True Positive (TP) over all positive result is low, caused 

by a high result of False Positive. The low recall means 

that the True Positive (TP) over all data that should be 

predicted as positive is low, caused by a high result of 

False Negative. The result also means that the algorithm 

cannot detect the vehicle that exists on the video and 

sometimes detect a vehicle where in the video the vehicle 

is not present.  

All the loss result can be seen in Fig. 6. Localization loss 

is the mismatch between the ground truth box with the 

predicted boundary box. Based on the Fig. 6(a), the loss 

value on the 5000 step already 0.07 and its value decreases 

as the number of steps increases. At step 50,000, the value 

hits 0.01. In this paper, MobileNetV2 is used for the 

classification process. Based on the Fig. 6(b), the 

classification loss is also low with 0.11 at 5000 steps and 

become 0.04 at 50,000 steps. The total loss of the 

algorithm can be seen in Fig. 6(c). At 5000 steps, the total 

loss is 0.22 and it decrease and hit 0.1 at 50,000 steps. 

Based on the results, overall loss value is near zero. While 

SSD only penalizes prediction from positive matches, the 

loss result is low. Based on the low loss during training and 

low accuracy during testing and evaluation, the model is 

overfitting. This is because there is class imbalance in the 

dataset obtained from the UAV. If the composition of the 

class in the dataset is considered, the class imbalance could 

affect the overfitting. The IR ratio of the dataset is above 

1.5 and considered moderate. When the model is trained 

with imbalanced datasets, it can overfit the training 

samples from the minority class but not generalize well 

during the testing [26]. Class imbalance ratio can also be 

defined as the ratio between the number of pixels of the 

background and the number of pixels of the ROI in one 
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image [26]. Based on Table II, the majority class has 

27.8×27.31 pixel, about less than 10% from the total pixel 

in one image, w.r.t the data set. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 6. Loss result: (a) Localization loss (b) Classification loss (c) 

Total loss (d) Regularization loss. 

 

B. SSD for Small Object and Low Resolution Image 

In this paper, dataset is obtained from UAV with 

average flight altitude 300 m and categorized as high-

altitude UAV. All the dataset is used for the training and 

testing. The paper focuses on evaluating the object 

detection performance based on SSD-MobileNetV2 

architecture while the input image has a low resolution, 

and the detected objects have a small scale relative to the 

image size with a complex background which impacts the 

dataset for training and testing. The resolution of the image 

generated from the high altitude UAV is 640×360 pixels 

and resized into 300×300 pixels. For each detection class, 

the average bounding box for the ground truth can be seen 

in Table II. This input is also used for testing and 

evaluation. 

TABLE II. OBJECT CLASS RESOLUTION 

Size (pixels) 
Object Class Average Ground Truth Resolution 

Truck Car Motorcycles 

Width 41.64 27.80 16.80 

Height 40.27 27.31 17.28 

 

For comparison, similar paper by Meng et al. [11] in 

Section II uses UAV to detect excavators along the 

pipeline in China with average range of flight latitude 

between 100 and 200 meters with the image size of 1920× 

1080 pixels and 350 images is used for training. The 

detailed comparison can be seen in Table III. The dataset 

is obtained from the internet and from the UAV with 

composition of 70% and 30% respectively. For the testing 

and evaluation, the input image is resized into 320×320 

and one-stage detector YOLOv3 is used to detect the 

excavator. However, there is no information about the 

ground truth scale of the object. The result of this 

experiment has a high recall with the value of 96.8%. 

TABLE III. MODEL COMPARISON 

 Meng et al. [11] Proposed method 

UAV latitude 100–200 m 300 m 

Image resolution 1920×1080 pixels 640×360 pixels 

Object class Excavator Car, Truck, Motorcycle 

Object Detector YOLOv3 SSD-MobileNetV2 

 

Based on the result in Section IV.A, the basic SSD-

MobileNetV2 architecture for low resolution and dense 

image with small scale object has an exceedingly small 

value of mAP and mAR. If we compare the performance 

with another one stage detector such as YOLOv3 in 

paper [11] and only consider the input size that enters the 

first stage in the detector, the result shows that YOLO is 

superior to SSD. This result is in line with the statement 

that the SSD accuracy is inferior to other architecture if the 

size of the object is small [19]. If the resolution of the 

detected object is considered, based on Table II, each of 

the objects occupies much fewer pixels in the image. This 

is because the vehicles are far enough from the UAV and 

the video taken from the UAV is also small. Thus, the 

process during the feature map in SSD makes the object 
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not detected because SSD uses bigger feature map than 

other architecture to speed up the process [20]. 

Based on the result and discussion above, there are two 

possible reasons why SSD shows limitations while 

detecting objects with a small scale caused by the altitude 

of the UAV that captured the image. First, the desired 

object is difficult to detect, even using the largest output 

feature map. Based on SSD-MobileNetV2 architecture, the 

largest output feature maps are scaled at around one-eighth 

of the input image. For example, the truck class with the 

largest pixel among all the classes has an average number 

of only 41.64×40.27 pixels. By using the largest output 

feature map, resulting only 5.2×5 pixels for the desired 

object. In addition, the motorcycle class as the smallest 

class has a result of 2.1×2.16 pixels. Thus, there is 

insufficient information to classify and locate the desired 

objects in the image. Second, based on the architecture, 

SSD model extracts multiple layers to detect and classify 

the object. During the backbone, subsampling and pooling 

operation, detailed information of the desired object could 

be lost and disturbed by the dense type of image [27]. 

Thus, the feature used to locate the small objects might 

lack detailed information to accurately localize the objects. 

Upon the challenge of small object detection in a low-

resolution image and the SSD limitation, future research 

could be conducted to improve the detection performance. 

It can be done by exploiting powerful contextual 

information by enlarging the small region that occupied 

the small object or modifying the feature extractor 

process [28]. Yet, the detection speed should also be 

considered while this option applied in the UAV object 

detection. 

V. CONCLUSION 

The purpose of this study is to evaluate the performance 

of SSD architecture in detecting objects around pipeline 

site at high-altitude. The experiment resulted in mean 

Average Precision and mean Average Recall of 0.026360 

and 0.067377, respectively. The results show that the mAP 

and mAR are low, meaning that the True Positive value 

over False Positive and False Negative value is low. Thus, 

the accuracy of SSD architecture is low for low resolution 

image with small scale object. It is because the SSD 

architecture uses lower resolution layers and smaller 

feature maps to detect objects, to speed up the process. 

Therefore, SSD architecture is not suitable for small-scale 

object detection in a low-resolution image. Even though 

the accuracy of SSD architecture is not desirable, the 

classification, localization, generalization, and total loss 

have a desirable value, that is close to zero. SSD only 

penalizes prediction from positive matches; thus, SSD is 

good enough for localization and classification for the true 

positive result.  

Based on this result, the works conclude that low 

accuracy result of SSD comes from the low-density 

information of the detected object. The low-density 

information reflected in poor performance of detecting the 

area in which the object resides. This problem might be 

solved by using image enhancing algorithms, to enrich the 

information of the image. The work of Truong et al. [29] 

might be used as inspiration to conduct this enhancement. 

However, further studies about the computational cost of 

such implementations should be conducted.  
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